Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	$\mathbf{9 7 0 9}$	$\mathbf{2 2}$

1 Attempt use of power law for logarithms
M1*
Obtain $x \log 3=x \log 2+2 \log 2$ or equivalent A1
Attempt solution for x of linear equation

2 (i) Show or imply correct ordinates $1, \sqrt{2}$ or $1.414,3 \quad$ B1
Use correct formula, or equivalent, with $h=1 \quad$ M1
Obtain 3.41
(ii) Obtain 6-3.41 and hence 2.59 , following their answer to (i) provided less than 6
Refer, in some form, to two line segments replacing curve and conclude with clear
justification of given result that answer is an under-estimate.

3 (i) Use the iteration process correctly at least once
Obtain at least two correct iterates to 5 decimal places
Conclude $\alpha=0.952$
$[1 \rightarrow 0.95647 \rightarrow 0.95257 \rightarrow 0.95223 \rightarrow 0.95220]$
(ii) State or imply equation is $x=\frac{1}{2} \sqrt[3]{x^{2}+6}$

Obtain $8 x^{3}-x^{2}-6=0$

4 (a) Obtain integral form of $k \cos \frac{1}{2} x$
Obtain correct $-2 \cos \frac{1}{2} x$
Use limits correctly to obtain 1
(b) Rewrite integrand as $\mathrm{e}^{-x}+1$

B1
Integrate to obtain $-\mathrm{e}^{-x} \ldots$
B1
Integrate to obtain $\ldots+x+c$

5 Obtain $4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $2 y^{2}$
Differentiate LHS term by term to obtain expression including at least one $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Obtain $2 x+4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+5+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Substitute 2 and -1 to attempt value of $\frac{d y}{d x}$
Obtain $-\frac{9}{2}$
Obtain equation $9 x+2 y-16=0$ or equivalent of required form

us	Paper
	$\mathbf{2 2}$

6 (i) Attempt differentiation using product rule M1
Obtain $8 x \ln x+4 x \quad$ (a.c.f.) A1
Equate first derivative to zero and attempt solution M1
Obtain 0.607 A1
Obtain -0.736 following their x-coordinate A1 $\sqrt{ }$
(ii) Use an appropriate method for determining nature of stationary point M1

Conclude point is a minimum (with no errors seen, second derivative $=8$)

7 (i) Substitute $x=-2$ and equate to zero M1
Substitute $x=-1$ and equate to 24 M1
Obtain $4 a-2 b=38$ and $a-b=20$ or equivalents A1
Attempt solution of two linear simultaneous equations (dependent on M1 M1) M1
Obtain $a=-1$ and $b=-21 \quad$ A1
(ii) Attempt to find quadratic factor by division, inspection or use of identity M1

Obtain $6 x^{2}-13 x+5$
Conclude $(x+2)(2 x-1)(3 x-5)$

8 (i) Use $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$ and $\sec \theta=\frac{1}{\cos \theta}$
Attempt to simplify left-hand side
Confirm given right-hand side $4 \cos 2 \theta$ with no errors seen
(ii) (a) State or imply $\cos 2 \theta=\frac{3}{4}$

Attempt correct process to find at least one angle M1
Obtain 20.7
Obtain 159.3° and no others in range
(b) Recognise as $\frac{4 \cos 30^{\circ}}{\sin ^{2} 30^{\circ}}$

Obtain $8 \sqrt{3}$ B1

