Page 4	Mark Scheme: Teachers' version	Syllabus	Paper		
	GCE AS/A LEVEL – May/June 2011	9709	22		

- 1 Attempt use of power law for logarithms
 Obtain $x \log 3 = x \log 2 + 2 \log 2$ or equivalent
 Attempt solution for x of linear equation
 Obtain 3.42

 M1*

 A1

 M1 dep*

 A1

 A1 [4]
- 2 (i) Show or imply correct ordinates 1, $\sqrt{2}$ or 1.414, 3 B1
 Use correct formula, or equivalent, with h = 1 M1
 Obtain 3.41 A1 [3]
 - (ii) Obtain 6-3.41 and hence 2.59, following their answer to (i) provided less than 6 B1 $\sqrt{}$ Refer, in some form, to two line segments replacing curve and conclude with clear justification of given result that answer is an under-estimate. B1 [2]
- 3 (i) Use the iteration process correctly at least once Obtain at least two correct iterates to 5 decimal places Conclude $\alpha = 0.952$ A1 [3] $[1 \rightarrow 0.95647 \rightarrow 0.95257 \rightarrow 0.95223 \rightarrow 0.95220]$
 - (ii) State or imply equation is $x = \frac{1}{2}\sqrt[3]{x^2 + 6}$ B1

 Obtain $8x^3 x^2 6 = 0$ B1 [2]
- 4 (a) Obtain integral form of $k \cos \frac{1}{2}x$ M1

 Obtain correct $-2\cos \frac{1}{2}x$ A1

 Use limits correctly to obtain 1 A1 [3]
 - (b) Rewrite integrand as $e^{-x} + 1$ B1
 Integrate to obtain $-e^{-x}$...
 Integrate to obtain ... +x + c B1

 B1

 B1

 B1

 B1

 [3]
- 5 Obtain $4y \frac{dy}{dx}$ as derivative of $2y^2$
 - Differentiate LHS term by term to obtain expression including at least one $\frac{dy}{dx}$ M1
 - Obtain $2x + 4y \frac{dy}{dx} + 5 + 6 \frac{dy}{dx}$ A1
 - Substitute 2 and -1 to attempt value of $\frac{dy}{dx}$ M1
 - Obtain $-\frac{9}{2}$
 - Obtain equation 9x + 2y 16 = 0 or equivalent of required form A1 [6]

Paper

Syllabus

		GCE AS/A LEVEL – May/June 2011	9709	22	
6	(i)	Attempt differentiation using product rule		M1	
		Obtain $8x \ln x + 4x$ (a.c.f.)		A1	
		Equate first derivative to zero and attempt solution		M1	
		Obtain 0.607		A1	F 6 3
		Obtain –0.736 following their <i>x</i> -coordinate		A 1√	[5]
	(ii)	Use an appropriate method for determining nature of stationary point		M1	
		Conclude point is a minimum (with no errors seen, second derivative	ye = 8	A1	[2]
7 (i)	(i)	Substitute $x = -2$ and equate to zero		M1	
		Substitute $x = -1$ and equate to 24		M1	
		Obtain $4a - 2b = 38$ and $a - b = 20$ or equivalents		A1	
		Attempt solution of two linear simultaneous equations (dependent of	on M1 M1)	M1	
		Obtain $a = -1$ and $b = -21$		A1	[5]
(ii)	(ii)	Attempt to find quadratic factor by division, inspection or use of identity		M1	
		Obtain $6x^2 - 13x + 5$		A1√	
		Conclude $(x+2)(2x-1)(3x-5)$		A1	[3]
8 (i)	Use $\csc\theta = \frac{1}{\sin\theta}$ and $\sec\theta = \frac{1}{\cos\theta}$		B1		
		5 0		3.61	
		Attempt to simplify left-hand side		M1	[2]
		Confirm given right-hand side $4\cos 2\theta$ with no errors seen		A1	[3]
	(ii)	(a) State or imply $\cos 2\theta = \frac{3}{4}$		B1	
		Attempt correct process to find at least one angle		M1	
		Obtain 20.7°		A1	
		Obtain 159.3° and no others in range		A1	[4]
		(b) Recognise as $\frac{4\cos 30^{\circ}}{\sin^2 30^{\circ}}$		B1	
		Sin ² 30 Obtain $8\sqrt{3}$		B1	[2]
		Obum 643		DI	L -]

Mark Scheme: Teachers' version

Page 5