Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	21

1 EITHER Attempt to square both sides obtaining three terms on each side M1
Attempt solution of three-term quadratic equation M1
Obtain $5 x+4 x-9=0$ and hence $-\frac{9}{5}$ and 1
$O R \quad$ Obtain value 1 from graphical method, inspection or linear equation
Obtain value $-\frac{9}{5}$ similarly

2 State $\frac{\mathrm{d} x}{\mathrm{~d} t}=3+2 \cos 2 t$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}=-4 \sin 2 t$ (or both)
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
Obtain or imply $\frac{-4 \sin 2 t}{3+2 \cos 2 t}$
A1
Substitute $\frac{1}{6} \pi$ to obtain $-\frac{1}{2} \sqrt{3}$ or exact equivalent

3 State or imply that $\ln y=\ln K+m \ln x \quad$ B1
Equate intercept on axis for $\ln y$ to $\ln K$
M1
Obtain 7.39 for K
A1
Attempt calculation of gradient of line M1
Obtain 1.37 for m A1

4 (i) Substitute -2 and equate to zero or divide by $x+2$ and equate remainder to zero
(ii) Attempt to find quotient by division or inspection or use of identity

Obtain at least $3 x^{2}+2 x$
Obtain $3 x^{2}+2 x+4$ with no errors seen

5 (i) Differentiate $\ln (x-3)$ to obtain $\frac{1}{x-3}$
Attempt to use product rule
B1

Obtain $\ln (x-3)+\frac{x}{x-3}$ or equivalent
M1

Substitute 4 to obtain 4
(ii) Use correct quotient or product rule

Obtain correct derivative in any form, e.g. $\frac{(x+1)-(x-1)}{(x+1)^{2}}$
Substitute 4 to obtain $\frac{2}{25}$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	21

6 (a) Rewrite integrand as $12 \mathrm{e}^{x}+4 \mathrm{e}^{3 x}$ B1
Integrate to obtain $12 \mathrm{e}^{x} \ldots$ B1
Integrate to obtain $\ldots \quad+\frac{4}{3} \mathrm{e}^{3 x}$B1Include $\ldots+c$B1
(b) Use identity $\tan ^{2} \theta=\sec ^{2} \theta-1$ B1
Integrate to obtain $2 \tan \theta+\theta$ or equivalent B1
Use limits correctly for integral of form $\alpha \tan \theta+b \theta$ M1
Confirm given answer $\frac{1}{2}(8+\pi)$ A1
7 (i) Draw correct sketch of $y=\mathrm{e}^{2 x}$ B1
Draw correct sketch of $y=14-x^{2}$ B1
Indicate two real roots only from correct sketches B1
(ii) Consider sign of $\mathrm{e}^{2 x}+x^{2}-14$ for 1.2 and 1.3 or equivalent M1
Justify conclusion with correct calculations ($\mathrm{f}(1.2)=-1.54, \mathrm{f}(1.3)=1.15)$ A1
(iii) Confirm given answer $x=\frac{1}{2} \ln \left(14-x^{2}\right)$B1
(iv) Use the iteration process correctly at least onceM1
Obtain final answer 1.26 A1Show sufficient iterations to 4 decimal places to justify answer or show a sign change inthe interval $(1.255,1.256)$
$[1.2 \rightarrow 1.2653 \rightarrow 1.2588 \rightarrow 1.2595$;
$1.25 \rightarrow 1.2604 \rightarrow 1.2593 \rightarrow 1.2594$;
$1.3 \rightarrow 1.2522 \rightarrow 1.2598 \rightarrow 1.2594]$
8 (i) State or imply $R=\sqrt{52}$ or $2 \sqrt{13}$
Use appropriate formula to find α M1
Obtain 56.31°
(ii) Attempt to find at least one value of $\theta-\alpha \quad$ M1
Obtain one correct value 80.9° of θA1
Carry out correct method to find second answer M1
Obtain 211.7° and no others in range A1
(iii) Obtain 60, following their value of R
Obtain 8. Allow quoted solution B1[4][3]

