Pag	ge 4	Mark Scheme: Teachers' version	Syllabus	<u>s11_ms</u> Paper	_
		GCE AS/A LEVEL – May/June 2011	9709	21	
EITH	EITHER Attempt to square both sides obtaining three terms on each side Attempt solution of three-term quadratic equation				
	(Obtain $5x + 4x - 9 = 0$ and hence $-\frac{9}{5}$ and 1		A1	
OR		Obtain value 1 from graphical method, inspection or linear equa	tion	B1	
	(Obtain value $-\frac{9}{5}$ similarly		B2	[3
State	$e \frac{dx}{dt} = 3$	$3 + 2\cos 2t$ or $\frac{dy}{dt} = -4\sin 2t$ (or both)		B1	
Use	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}$	$\frac{y}{t} \div \frac{dx}{dt}$		M1	
Obta	in or in	$\frac{-4\sin 2t}{3+2\cos 2t}$		A1	
Subs	stitute $\frac{1}{6}$	$\frac{1}{2}\pi$ to obtain $-\frac{1}{2}\sqrt{3}$ or exact equivalent		A1	[4
		by that $\ln y = \ln K + m \ln x$ scept on axis for $\ln y$ to $\ln K$		B1 M1	
Atter		culation of gradient of line		A1 M1	
Obta	uin 1.37	for <i>m</i>		A1	[5
	Substit Obtain	ute -2 and equate to zero or divide by $x + 2$ and equate remainded $a = 8$	er to zero	M1 A1	[2
(ii)	Attemr	t to find quotient by division or inspection or use of identity		M1	-
	-	at least $3x^2 + 2x$		A1	
	Obtain	$3x^2 + 2x + 4$ with no errors seen		A1	[3
(i)	Differe	ntiate $\ln(x-3)$ to obtain $\frac{1}{x-3}$		B1	
	Attempt to use product rule				
	Obtain	$\ln(x-3) + \frac{x}{x-3}$ or equivalent		A1	
	Substitute 4 to obtain 4				[4
		rrect quotient or product rule		M1	
	Obtain	correct derivative in any form, e.g. $\frac{(x+1)-(x-1)}{(x+1)^2}$		A1	
		ute 4 to obtain $\frac{2}{25}$		A1	[3

Page 5		ne 5	Mark Scheme: Teachers' version	9709_s11 Syllabus Par		_
			GCE AS/A LEVEL – May/June 2011	9709	Paper 21	
6	(a)	Integrate t	tegrand as $12e^{x} + 4e^{3x}$ to obtain $12e^{x} \dots$ to obtain $\dots + \frac{4}{3}e^{3x}$ $\dots + c$		B1 B1 B1 B1	[4]
	(b)	Integrate t Use limits	ity $\tan^2 \theta = \sec^2 \theta - 1$ to obtain $2\tan\theta + \theta$ or equivalent is correctly for integral of form $\alpha \tan\theta + b\theta$ given answer $\frac{1}{2}(8 + \pi)$		B1 B1 M1 A1	[4]
7	(i)	Draw correct sketch of $y = e^{2x}$ Draw correct sketch of $y = 14 - x^2$ Indicate two real roots only from correct sketches				
	(ii)		sign of $e^{2x} + x^2 - 14$ for 1.2 and 1.3 or equivalent nelusion with correct calculations (f(1.2) = -1.54, f(1.3) = 1)	1.15)	M1 A1	[2]
	(iii)	Confirm g	given answer $x = \frac{1}{2} \ln(14 - x^2)$		B1	[1]
	(iv)	Obtain fin Show suff the interva $[1.2 \rightarrow 1.2]$ $1.25 \rightarrow 1.2$	eration process correctly at least once al answer 1.26 ficient iterations to 4 decimal places to justify answer or shal (1.255, 1.256) $2653 \rightarrow 1.2588 \rightarrow 1.2595$; $2604 \rightarrow 1.2593 \rightarrow 1.2594$; $522 \rightarrow 1.2598 \rightarrow 1.2594$]	now a sign change in	M1 A1 A1	[3]
8	(i) (ii)	Use appro Obtain 56 Attempt to Obtain on	nply $R = \sqrt{52}$ or $2\sqrt{13}$ priate formula to find α .31° o find at least one value of $\theta - \alpha$ e correct value 80.9° of θ correct method to find second answer		B1 M1 A1 M1 A1 M1	[3]
	(iii)	Obtain 60	1.7° and no others in range, following their value of <i>R</i>Allow quoted solution		A1 B1 v B1	[4] [2]