Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	13

$\begin{array}{\|ll} \hline 1 & (a+x)^{5}+(1-2 x)^{6} \\ & \text { Coeff of } x^{3} \text { in } 1^{\text {st }}=10 \times a^{2} \\ & \text { Coeff of } x^{3} \text { in } 2^{\text {nd }}=20 \times(-2)^{3} \\ & \rightarrow 10 a^{2}-160=90 \\ & \rightarrow a=5 \end{array}$	$\begin{array}{ll} \begin{array}{l} \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array} \\ & \\ \hline \end{array}$	co co Forming an equation for $a+$ solution co (condone \pm)
$2 y=m x+4 \quad y=3 x^{2}-4 x+7$ Equate $\rightarrow 3 x^{2}-(4+m) x+3=0$ Uses $b^{2}-4 a c \rightarrow(4+m)^{2}-36$ Solution of quadratic $m=2$ or -10 Set of values $m>2$ or $m<-10$	M1 M1 DM1 A1 A1 [5]	Eliminates y (or x) completely Any use of $b^{2}-4 a c$ Method shown. Correct end-values co
$3 \quad \frac{x}{a}+\frac{y}{b}=1$ $P(a, 0)$ and $Q(0, b)$ Distance $\rightarrow \sqrt{\left(a^{2}+b^{2}\right)}=\sqrt{45}$ Gradients $\rightarrow \frac{-a}{b}=\frac{-1}{2}$ Solution of sim eqns $\rightarrow a=6, b=3$	M1 A1 M1 A1 A1 [5]	M1 even if sign(s) incorrect. Correct values a and b (both)
4 (a) $\begin{aligned} & y=\frac{2 x^{3}+5}{x}=2 x^{2}+\frac{5}{x} \\ & \mathrm{~d} / \mathrm{d} x=4 x-\frac{5}{x^{2}} \text { or } 4 x-5 x^{-2} \end{aligned}$ (b) $\begin{aligned} & \int(3 x-2)^{5} \mathrm{~d} x=\frac{(3 x-2)^{6}}{6} \div 3(+c) \\ & \int_{0}^{1}(3 x-2)^{5} \mathrm{~d} x=\left[\frac{(3 x-2)^{6}}{18}\right] \end{aligned}$ Limits used correctly $\rightarrow-3^{1 / 2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 + A1 } \end{aligned}$ [3] B1 B1 M1 A1 [4]	Knows to divide numerator by x co B1 without " $\div 3$ ". B1 for " $\div 3$ ". (ignore $(+c)$) Uses limits after integration. co
5 (i) $\begin{aligned} & \overrightarrow{P Q}=3 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k} \\ & \overrightarrow{R Q}=-3 \mathbf{i}+8 \mathbf{j}+3 \mathbf{k} \end{aligned}$ (ii) $\begin{aligned} \overrightarrow{P Q} \cdot \overrightarrow{R Q} & =-9+48-9=30 \\ & =\sqrt{ } 54 \sqrt{ } 82 \cos R Q P \\ \rightarrow R Q P & =63.2^{\circ} \end{aligned}$	M1 M1 A1 [4]	Allow B2,1 for either one, B1 for the other. Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ Correct use of modulus All linked correctly co

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	13

6 (a) $\begin{aligned} & a r^{2}=20 \\ & \frac{a}{1-r}=3 a \\ & \text { Soln of equations } \rightarrow(r=2 / 3) a=45 \end{aligned}$ (b) $\begin{aligned} & a+7 d=3(a+2 d) \\ & \overrightarrow{2 a}=d \\ & S_{8}=4(2 a+7 d)=32 d \text { or } 64 a \\ & S_{4}=2(2 a+3 d)=8 d \text { or } 16 a \end{aligned}$	B1 B1 M1 A1 [4] M1 A1 M1 A1	co co Complete method to find a. co Use of $a+(n-1) d$ co correct use of S_{n} formula once. ag
7 (i) $A X=6 \tan \frac{\pi}{3}=6 \sqrt{ } 3$ (ii) Area of triangle $=1 / 2 \times 6 \times 6 \sqrt{3}$ Area of sector $=1 / 26^{2} \times \frac{\pi}{3}$ Area shaded $=18 \sqrt{ } 3-6 \pi$ (iii) $\begin{aligned} & \operatorname{Arc} A B=6 \times \frac{\pi}{3}=2 \pi \\ & O X=6 \div \cos \frac{\pi}{3}=12, \quad B X=6 \\ & \text { Perimeter }=6 \sqrt{ } 3+2 \pi+6 \end{aligned}$		ag Use of $1 / 2 b h$ Use of $1 / 2 r^{2} \theta$ co Use of $r \theta$ Use of trig to find ($O X$ and then) $B X$.
8 (i) $\begin{aligned} & \left(\frac{1}{\sin \theta}-\frac{1}{\tan \theta}\right)^{2} \equiv \frac{1-\cos \theta}{1+\cos \theta} \\ & \left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta} \\ & =\frac{(1-\cos \theta)(1-\cos \theta)}{1-\cos ^{2} \theta}=\frac{1-\cos \theta}{1+\cos \theta} \end{aligned}$ $\text { (ii) } \begin{aligned} & \left(\frac{1}{\sin \theta}-\frac{1}{\tan \theta}\right)^{2}=\frac{2}{5} \\ & \frac{1-\cos \theta}{1+\cos \theta}=\frac{2}{5} \\ & \cos \theta=\frac{3}{7} \\ & \theta=64.6^{\circ} \text { or } 295.4^{\circ} \end{aligned}$	M1 A1 A1 A1 $\sqrt{ }$	Use of $\tan =\sin / \cos$ Use of $\sin ^{2}+\cos ^{2}=1$. All correct. (NB ag. - ensure cancelling has been done) Uses part (i) to obtain an eqn in $\cos \theta$ co co. $\sqrt{ }$ for 360 - " 1 st answer".

$9 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{x}}-1 \quad P(9,5)$
(i) $y=4 \sqrt{x}-x(+c)$

Uses $(9,5)$ in an integrated expression $\rightarrow c=2$
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \rightarrow x=4, y=6$
(iii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d}^{2} x}=-x^{\frac{-3}{2}} \rightarrow-\mathrm{ve} \rightarrow$ Max
(iv) $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{3} \quad$ Perpendicular $m=3$
$\tan \theta=3 \quad$ Angle is $\tan ^{-1} 3$
$k=3$

B1 B1
M1
A1

M1 A1
A1
[3]

B1 B1 $\sqrt{ }$
[2]

M1

A1
[4]

Ignore $+c$.
Substitution of point after integration.
co.

Attempt to solve $\mathrm{d} y / \mathrm{d} x=0 . x$ correct. y correct.
co. $\sqrt{ }$ for correct deduction.

Use of $m_{1} m_{2}=-1$

Needs $k=3$
[2]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	13

$10 \mathrm{f}: x \mapsto 3 x-4 \quad \mathrm{~g}: x \mapsto 2(x-1)^{3}+8$
(i) $\mathrm{fg}(2)=\mathrm{f}(10)=26$
$\mathrm{f}^{-1}(x)$
(ii)

(iii) $\mathrm{g}^{\prime}(x)=6(x-1)^{2}$
$\mathrm{g}^{\prime}(x)>\rightarrow$ no turning points
$\rightarrow \mathrm{g}$ is $1: 1, \mathrm{~g}$ has an inverse.
(iv) $\mathrm{f}^{-1}(x)=\frac{x+4}{3}$

Attempt at making x
Order correct. $-8, \div 2, \sqrt[3]{ },+1$
$\mathrm{g}^{-1}(x)=\sqrt[3]{\frac{x-8}{2}}+1$
M1 A1 Must use g first, then f . co
[2]

B1
B1
B1
$y=\mathrm{f}(x)$ correct in $1^{\text {st }}, 4^{\text {th }}$ quadrants.
$y=\mathrm{f}^{-1}(x)$ correct in $1^{\text {st }}, 2^{\text {nd }}$ quadrants.
$y=x$ marked, or quoted.
[3]

B1
B1 $\sqrt{ }$
B1 $\sqrt{ }$
[3]
allow only for incorrect " 6 "
allow only for incorrect " 6 "
following from incorrect " 6 "

B1
M1

A1
co]
co
May change x and y first.
Must all be correct, but allow for $+8,-1$
co as function of x, not y.

