		970	9 s11 ms 1:	2
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2011	9709	12	l

1	$\int \left(x^3 + \frac{1}{x^3}\right) dx = \frac{x^4}{4} + \frac{x^{-2}}{-2} + c$	3 × B1 [3]	Allow unsimplified, 1 mark for each term, including " <i>c</i> "
2	$\left(1-\frac{3}{2}x\right)^6$		
	(i) Term in $x^2 {}^6C_2 \times \left(\frac{\pm 3x}{2}\right)^2 = \frac{135x^2}{4}$	M1 A1	For either unsimplified term co
	Term in $x^3 = {}^6C_3 \times \left(\frac{\pm 3x}{2}\right)^3 = \frac{-540x^3}{8}$	A1 [3]	co (omission or error with "–" can still gain 2 out of 3)
	(ii) Term in $x^3 = \frac{270x^3}{4} - \frac{135kx^3}{2}$	M1	considers exactly 2 terms in x^3
	$\rightarrow k = 1.$	A1 [2]	со
3	(i) $x^2 + px + q = (x+3)(x-5)$ $\rightarrow p = -2, q = -15.$ (any other method ok)	M1 A1 [2]	Must be $(x + 3)$ and $(x - 5)$. co
	(ii) $x^2 + px + q + r = 0$ Use of " $b^2 - 4ac$ " Uses a, b and c correctly r = 16 or $= (x + k)^2 \rightarrow 2k = p (M1) k^2 = q + r (M1)$ $\rightarrow k = -1 \rightarrow r = 16 (A1)$	M1 DM1 A1 [3]	Any use of " $b^2 - 4ac$ " <i>c</i> must include both <i>q</i> and <i>r</i> . co
4	$y = \frac{4}{3x - 4}$		
	(i) $\frac{dy}{dx} = -4(3x-4)^{-2} \times 3$	B1 B1	Correct without $\times 3$. For $\times 3$.
	If $x = 2, m = -3$ Eqn of tangent $y - 2 = -3(x - 2)$	M1 A1 [4]	Correct line eqn. co (for normal M0A0)
	(ii) $\tan\theta = \pm (-3)$ $\rightarrow \theta = \pm 108.4^{\circ} \text{ (or } \pm 71.6^{\circ}\text{)}$	M1 A1√ [2]	Correct link with (\pm his gradient) co (accept acute or obtuse) or -71.6° or radians
	or scalar product, $\tan \theta = y$ -step $\div x$ -step or use of $\tan (A - B)$ M1A1 for each		

	9709_s11 m							9 <u>s11_ms_1</u> 2
	Ра	CCE AS/A EVEL _ May/Jupo 2011			ion	Syllabus	Paper	
			GCE A5/A LEVEL -	- May/Ju	ne z	2011	9709	12
5	(i)	$\frac{\cos}{\tan\theta(1-1)}$	$\frac{\theta}{\sin\theta} \equiv \frac{\cos^2\theta}{\sin\theta(1-\sin\theta)}$ $\sin^2\theta$	M1		Use of $t = s + s$	- c	
		$=\frac{1-1}{\sin\theta(1-1)}$	$\frac{\sin \theta}{1-\sin \theta}$	M1		Replaces $\cos f(\sin \theta)$.	$^{2}\theta$ with $1 - \sin^{2}\theta$ t	to form
		$=\frac{1+\sin\theta}{\sin\theta}$	$\frac{d\theta}{\partial t} = \frac{1}{\sin \theta} + 1$	A1	[3]	AG. Ensure 2 squares.	all ok. Must show	difference of
	(ii)	$\frac{\cos}{\tan\theta(1-$	$\frac{\theta}{-\sin\theta} = 4 \rightarrow \frac{1}{\sin\theta} + 1 = 4$	M1		Linking up to	o obtain $\sin\theta = k$.	
		$\rightarrow \sin\theta =$	$= \frac{1}{3} \rightarrow \theta = 19.5^{\circ}, 160.5^{\circ}$	A1 A1	l√ [3]	co. $\sqrt{180^\circ}$ - no other solu	- 1 st answer provid tions in the range	ling there are 0° to 360°.
6	(i)	$f(x) = \frac{x+x}{2x}$	+3 - 1					
		$ff(x) = \frac{\frac{1}{2}}{\frac{2}{2}}$	$\frac{\frac{x+3}{2x-1}+3}{\frac{(x+3)}{2x-1}-1} = \frac{7x}{7} = x$	B1 M1 A1	[3]	Replacing " <i>x</i> Correct algeb AG – all corr	" twice - must be ora – clearing $(2x)$ rect.	correct - 1)
	(ii)	$y = \frac{x+3}{2x-3}$ $\rightarrow 2xy$ $\rightarrow x(2y)$ $\rightarrow f^{-1}(x)$	$\frac{3}{1} - y = x + 3$ y - 1) = y + 3 x) = $\frac{x + 3}{2x - 1}$	M1 A1	[2]	Attempt to m method co	ake <i>x</i> the subject	and complete
		or since $f^{-1}(x) = f(x)$	ff(x) = x, (x) = $\frac{x+3}{2x-1}$ (M1, A1)					
7	(i)	(2, 5) to (Equation Gradient of Eqn of Pe Sim Eqns	10, 9) gradient = $\frac{1}{2}$ of L_2 $y = \frac{1}{2}x$. of perpendicular = -2 erp $y - 5 = -2(x - 2)$ $x \rightarrow C(3.6, 1.8)$	B1 B1√ M1 M1 A1	[5]	co on gradient Use of m_1m_2 Correct form co	t of L_1 = -1 of line eqn	
	(ii)	$d^2 = 1.6^2$	$+3.2^2 \rightarrow d=3.58$	M1 A1	[2]	Correct meth co (accept wa	od for AC ith $\sqrt{5}$ in answer)	

9/09 SII MS	109	SIL	ms	12
-------------	-----	-----	----	----

	Page 6		Mark Scheme: Teachers' version			Syllabus	Paper
			GCE AS/A LEVEL – N	lay/June 2	2011	9709	12
8	(i)	\overrightarrow{BA} . \overrightarrow{BC}	or $\overrightarrow{AB} \cdot \overrightarrow{CB}$	B1	Correct two v	vectors for angle A	1BC.
		$\overrightarrow{BA} = \begin{bmatrix} - & - & - & - \\ - & & - & - & - \\ - & & - & -$	$\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \overrightarrow{BC} = \begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix}$	M1	Correct meth	od for one of the	sides.
		$\overrightarrow{BA} \cdot \overrightarrow{BC} =$ $\rightarrow \theta =$ $\overrightarrow{aa} =$	= -8 = 3 × 7 × cos θ = 112.4° or 1.96 radians	M1 M1 M1 A1 [6]	Correct use f Correct meth All linked co (67.6° usually	for any pair of vec od for moduli. rrectly. co y gets 4/6)	tors.
	(ii)	OD = O2 =		M1 A1√ [2]	Correct meth or for $\mathbf{d} = \mathbf{a} + \mathbf{A} 1 \sqrt{\mathbf{for his}}$	od. (allow for $\mathbf{d} = \mathbf{c} - \mathbf{b}$ or for $\mathbf{d} = \mathbf{I}$ \overrightarrow{BC} .	$\mathbf{a} + \mathbf{b} - \mathbf{c}$ $\mathbf{b} + \mathbf{c} - \mathbf{a}$)
9	(i)	(a) $f(x) =$ One Othe	$= 3 - 4\cos^2 x.$ limit is -1 r limit is 3	B1 B1 [2]	co irrespecti co irrespecti	ve of inequalities ve of inequalities	
		(b) $3-4$ $\rightarrow 0$ \rightarrow	$4\cos^2 x = 1 \rightarrow \cos^2 x = \frac{1}{2}$ $\cos x = \pm \frac{1}{\sqrt{2}}$ $x = \frac{1}{4} \pi \text{ or } \frac{3}{4} \pi$	M1 A1 A1√ [3]	Makes $\cos x$ co (radians). ("exact" mea earn A0 A1 $$	the subject. $\sqrt{for "\pi - (1^{st} ans)}$ ns that decimal ar)	swer)" Iswers only
	(ii)	(a)		B1 B1 [2]	Joins (0, -1) function Not a line, fla inflexion.	to $(\pi, 7)$, providin attens at extremition	g increasing es-needs
		(b) f has incre	an inverse since it is 1:1 or easing or no turning points.	B1 [1]	co independe	ent of part (i)	

9700) g11	ms	12
2702	, DTT	in D	

Page 7		qe 7	Mark Scheme:	Teachers'	versi	ion	Syllabus	Paper
		<u> </u>	GCE AS/A LEVE	EL – May/Ju	ine 2	2011	9709	12
L					-	-		
10	(a)	a + 5d =	$4a$ or $\frac{(a+4a)}{2} \times$	6 B1		со		
		$\frac{6}{2}(2a+5)$	5 <i>d</i>) or $\frac{(a+4a)}{2} \times 6 = 36$	50 M1 A	A 1	Correct left-h	and side. All cor	rect.
		Sim Eqns	$a = 24^{\circ} \text{ or } \frac{2\pi}{15} \text{ rads}$	A1		Either answe	r.	
	Arc length = 5θ Perimeter = 12.1.			M1 A1	[6]	Correct use of arc length with θ in rads. co		
	(b)	(i) $\frac{k+1}{2k+1}$	$\frac{6}{k+3} = \frac{k}{k+6}$	M1 A	A1	Correct eqn f	for k.	
		$\rightarrow h$ (NB	$k^2 - 9k - 36 = 0 \rightarrow k = 12$ stating <i>a</i> , <i>ar</i> , <i>ar</i> ² as f(<i>k</i>) gets	2 A1 (M1)	[3]	Co condone	inclusion of $k = -$	3.
		(ii) $r = \frac{2}{2}$	$s_{3}, a = 27$ $S_{\infty} = 27 \div \frac{1}{3} = 81.$	M1 A	A1 [2]	Correct form $-1 \le r \le 1$.	ula for S_{∞} must ha	ive
11	<i>y</i> =	$=4\sqrt{x}-x.$	_					
	(i)	At A , $4\sqrt{4}$	$\sqrt{x} - x = 0 \rightarrow A(16, 0)$	B1		co-indepen	dent of working.	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{\mathrm{T}}$	$\frac{1}{2} - 1$	B1 B	1	B1 for each p	oart.	
	= 0 when		$x = 4 \rightarrow (4, 4)$	M1 A	A1 [5]	Sets to 0 and	solves his eqn. co	0
	(ii)	Vol = π	$\int y^2 dx =$					
		$\pi \int (16x -$	$+x^2-8x^{\frac{3}{2}}) dx$	M1		Use of correct integration	et formula + attem	pt at
		$\pi [8x^2 +$ Limits 0 t	$\frac{x^{3}}{3} - 8\frac{x^{2}}{\frac{5}{2}}]$ so $16 \rightarrow 136.5\pi$. (or 137π)	A3,2 DM1 A1	,1 [6]	One mark for each term – unsimplifie Correct use of his limits. co - (429 ok)		