Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	12

$1 \int\left(x^{3}+\frac{1}{x^{3}}\right) \mathrm{d} x=\frac{x^{4}}{4}+\frac{x^{-2}}{-2}+c$	$\begin{array}{r} 3 \times \mathrm{B} 1 \\ {[3]} \end{array}$	Allow unsimplified, 1 mark for each term, including " c "
$2\left(1-\frac{3}{2} x\right)^{6}$ (i) Term in $x^{2} \quad{ }^{6} C_{2} \times\left(\frac{ \pm 3 x}{2}\right)^{2}=\frac{135 x^{2}}{4}$ Term in $x^{3} \quad{ }^{6} C_{3} \times\left(\frac{ \pm 3 x}{2}\right)^{3}=\frac{-540 x^{3}}{8}$ (ii) Term in $x^{3}=\frac{270 x^{3}}{4}-\frac{135 k x^{3}}{2}$ $\rightarrow \quad k=1 .$	M1 A1 [3] M1 A1 [2]	For either unsimplified term co co (omission or error with "-" can still gain 2 out of 3) considers exactly 2 terms in x^{3} co
3 (i) $\begin{aligned} & x^{2}+p x+q=(x+3)(x-5) \\ & \rightarrow p=-2, q=-15 . \end{aligned}$ (any other method ok) (ii) $x^{2}+p x+q+r=0$ Use of " $b^{2}-4 a c$ " Uses a, b and c correctly $r=16$ $\begin{aligned} & \text { or } \\ & =(x+k)^{2} \rightarrow 2 k=p(\mathrm{M} 1) k^{2}=q+r(\mathrm{M} 1) \\ & \rightarrow k=-1 \rightarrow r=16(\mathrm{~A} 1) \end{aligned}$	$\begin{array}{\|lr} \text { M1 } & \\ \text { A1 } & \\ & {[2]} \\ & \\ \text { M1 } & \\ \hline \text { DM1 } & \\ \text { A1 } & \\ & \\ \hline \end{array}$	Must be $(x+3)$ and $(x-5)$. co Any use of " $b^{2}-4 a c$ " c must include both q and r. co
$4 \quad y=\frac{4}{3 x-4}$ (i) $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{dx}}=-4(3 x-4)^{-2} \times 3 \\ & \text { If } x=2, m=-3 \end{aligned}$ Eqn of tangent $y-2=-3(x-2)$ (ii) $\tan \theta= \pm(-3)$ $\rightarrow \quad \theta= \pm 108.4^{\circ} \quad\left(\text { or } \pm 71.6^{\circ}\right)$ or scalar product, $\tan \theta=y$-step $\div x$-step or use of $\tan (A-B) \quad$ M1A1 for each	B1 B1 M1 A1 [4] M1 A1V [2]	Correct without $\times 3$. For $\times 3$. Correct line eqn. co (for normal M0A0) Correct link with (\pm his gradient) co (accept acute or obtuse) or -71.6° or radians

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	$\mathbf{9 7 0 9}$	$\mathbf{1 2}$

5 $\begin{aligned} & \frac{\cos \theta}{\tan \theta(1-\sin \theta)} \equiv \frac{\cos ^{2} \theta}{\sin \theta(1-\sin \theta)} \\ & =\frac{1-\sin ^{2} \theta}{\sin \theta(1-\sin \theta)} \\ & =\frac{1+\sin \theta}{\sin \theta}=\frac{1}{\sin \theta}+1 \end{aligned}$ (ii) $\begin{aligned} & \frac{\cos \theta}{\tan \theta(1-\sin \theta)}=4 \rightarrow \frac{1}{\sin \theta}+1=4 \\ & \rightarrow \sin \theta=1 / 3 \rightarrow \theta=19.5^{\circ}, 160.5^{\circ} \end{aligned}$	M1 M1 A1 [3] M1 A1 A1V [3]	Use of $t=s \div c$ Replaces $\cos ^{2} \theta$ with $1-\sin ^{2} \theta$ to form $\mathrm{f}(\sin \theta)$. AG. Ensure all ok. Must show difference of 2 squares. Linking up to obtain $\sin \theta=k$. co. $\sqrt{ } 180^{\circ}-1^{\text {st }}$ answer providing there are no other solutions in the range 0° to 360°.
6 $\text { (i) } \begin{aligned} \mathrm{f}(x) & =\frac{x+3}{2 x-1} \\ \mathrm{ff}(x) & =\frac{\frac{x+3}{\frac{2 x-1}{2(x+3)}} \frac{2 x-1}{2 x-1}}{}=\frac{7 x}{7}=x \end{aligned}$ (ii) $\begin{aligned} & y=\frac{x+3}{2 x-1} \\ & \rightarrow \quad 2 x y-y=x+3 \\ & \rightarrow x(2 y-1)=y+3 \\ & \rightarrow \mathrm{f}^{-1}(x)=\frac{x+3}{2 x-1} \end{aligned}$ or since $\mathrm{ff}(x)=x$, $\mathrm{f}^{-1}(x)=\mathrm{f}(x)=\frac{x+3}{2 x-1}(\mathrm{M} 1, \mathrm{~A} 1)$	M1 A1 [2]	Replacing " x " twice - must be correct Correct algebra - clearing $(2 x-1)$ AG - all correct. Attempt to make x the subject and complete method co
7 (i) $(2,5)$ to $(10,9)$ gradient $=1 / 2$ Equation of $L_{2} \quad y=\frac{1}{2} x$. Gradient of perpendicular $=-2$ Eqn of Perp $y-5=-2(x-2)$ Sim Eqns $\rightarrow C(3.6,1.8)$ (ii) $d^{2}=1.6^{2}+3.2^{2} \rightarrow d=3.58$	B1 B1 $\sqrt{ }$ M1 M1 A1 [5] M1 A1 [2]	co \checkmark on gradient of L_{1} Use of $m_{1} m_{2}=-1$ Correct form of line eqn co Correct method for $A C$ co (accept with $\sqrt{ } 5$ in answer)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	12

8 (i) $\overrightarrow{B A} \cdot \overrightarrow{B C}$ or $\overrightarrow{A B} \cdot \overrightarrow{C B}$
$\overrightarrow{B A}=\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right), \quad \overrightarrow{B C}=\left(\begin{array}{c}6 \\ -2 \\ 3\end{array}\right)$
$\overrightarrow{B A} \cdot \overrightarrow{B C}=-8$
$=3 \times 7 \times \cos \theta$
$\rightarrow \quad \theta=112.4^{\circ}$ or 1.96 radians
(ii) $\overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{A D}=\overrightarrow{O A}+\overrightarrow{B C}$
$=\left(\begin{array}{l}8 \\ 1 \\ 8\end{array}\right)$
9 (i) (a) $\mathrm{f}(x)=3-4 \cos ^{2} x$.
One limit is -1
Other limit is 3
(b) $3-4 \cos ^{2} x=1 \rightarrow \cos ^{2} x=1 / 2$
$\rightarrow \quad \cos x= \pm \frac{1}{\sqrt{2}}$
$\rightarrow \quad x=1 / 4 \pi$ or $3 / 4 \pi$
(ii) (a)
(b) f has an inverse since it is 1:1 or increasing or no turning points.

B1 Correct two vectors for angle $A B C$.

Correct method for one of the sides.

Correct use for any pair of vectors.
Correct method for moduli.
All linked correctly. co
[6] (67.6 ${ }^{\circ}$ usually gets 4/6)
Correct method. (allow for $\mathbf{d}=\mathbf{a}+\mathbf{b}-\mathbf{c}$ or for $\mathbf{d}=\mathbf{a}+\mathbf{c}-\mathbf{b}$ or for $\mathbf{d}=\mathbf{b}+\mathbf{c}-\mathbf{a})$
$A 1 \sqrt{ }$ for his $\overrightarrow{B C}$.
[2]

B1
B1
[2]

M1

A1 A1V
[3]
B1
B1
[2]

B1 co independent of part (i)

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	$\mathbf{9 7 0 9}$	$\mathbf{1 2}$

10 (a) $a+5 d=4 a \quad$ or $\quad \frac{(a+4 a)}{2} \times 6$ $\frac{6}{2}(2 a+5 d)$ or $\frac{(a+4 a)}{2} \times 6=360$ Sim Eqns $a=24^{\circ}$ or $\frac{2 \pi}{15}$ rads Arc length $=5 \theta$ Perimeter $=12.1$. (b) (i) $\frac{k+6}{2 k+3}=\frac{k}{k+6}$ $\rightarrow k^{2}-9 k-36=0 \rightarrow k=12$ (NB stating $a, a r, a r^{2}$ as $\mathrm{f}(k)$ gets M1) (ii) $r=2 / 3, \quad a=27$ $\rightarrow S_{\infty}=27 \div 1 / 3=81 .$	A1 M1 A1 [6] M1 A1 A1 [3] M1 A1 [2]	co Correct left-hand side. All correct. Either answer. Correct use of arc length with θ in rads. co Correct eqn for k. Co condone inclusion of $k=-3$. Correct formula for S_{∞} must have $-1 \leq r \leq 1$. co.
$11 y=4 \sqrt{x}-x$. (ii) $\begin{aligned} & \mathrm{Vol}=\pi \int y^{2} \mathrm{~d} x= \\ & \pi \int\left(16 x+x^{2}-8 x^{\frac{3}{2}}\right) \mathrm{d} x \\ & \pi\left[8 x^{2}+\frac{x^{3}}{3}-8 \frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right] \end{aligned}$ Limits 0 to $16 \rightarrow 136.5 \pi$. (or 137π)	B1 B1 B1 M1 A1 [5] M1 A3,2,1 DM1 A1 [6]	co - independent of working. B1 for each part. Sets to 0 and solves his eqn. co Use of correct formula + attempt at integration One mark for each term - unsimplified Correct use of his limits. co - (429 ok)

