Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	11

$1 \quad{ }^{7} \mathrm{C}_{2} x^{5}\left(\frac{2}{x^{2}}\right)^{2}$ SOI and leading to final answer 84 or $84 x$ as final answer	B2 B1	B1 for $2 / 3$ parts correct leading to ans. If no answer; $84 x$ seen scores B 2 , else ${ }^{7} \mathrm{C}_{2} x^{5}\left(\frac{2}{x^{2}}\right)^{2}$ scores SCB 1 only
$2 \begin{aligned} & \left(\frac{d v}{d r}=\right) 4 \pi r^{2} \\ & =4 \pi \times 10^{2} \\ & \frac{d r}{d t}=\frac{d v}{d t} / \frac{d v}{d r} \text { OE used } \\ & \frac{50}{4 \pi \times 10^{2}}=\frac{1}{8 \pi} \text { or } 0.0398 \end{aligned}$	M1 A1 M1 A1 [4]	SOI at any point Correct link between differentials with $\frac{d r}{d t}$ finally as subject Allow $\frac{50}{400 \pi}$. Non-calculus methods $\frac{0}{4}$
3 (i) Correct shape - touching positive x-axis (ii) $(\pi) \int(x-2)^{4} \mathrm{~d} x$ $\begin{aligned} & (\pi)\left[\frac{(x-2)^{5}}{5}\right] \\ & (\pi)[0-(-32) / 5)] \\ & \frac{32 \pi}{5} \text { or } 6.4 \pi \end{aligned}$	B1 [1] M1 A1 M1 A1 [4]	Ignore intersections with axes Use $(\pi) \int y^{2} \mathrm{~d} x \&$ attempt integrate but expansion before integn needs 5 terms Use of limits 0,2 on their $(\pi) \int y^{2} \mathrm{~d} x$ cao Rotation about y-axis max $1 / 5$
$4 \quad$ (i) $\begin{aligned} & \overrightarrow{C P}=-6 \mathbf{i}+6 \mathbf{j}-2 \mathbf{k} \\ & \overrightarrow{C Q}=-6 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k} \end{aligned}$ (ii) Scalar product $=36+36-6$ $\begin{aligned} & 66=\|\overrightarrow{C P}\|\|\overrightarrow{C Q}\| \cos \theta \\ & \|\overrightarrow{C P}\|=\sqrt{76},\|\overrightarrow{C Q}\|=\sqrt{81} \end{aligned}$ Angle $P C Q=32.7^{\circ}$ (or 0.571 rad)	B1 B1 [2] M1 M1 M1 A1 [4]	Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ Linking everything correctly Correct magnitude for either cao 147.3° converted to 32.7° gets A0

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	11

5 $\text { (i) } \begin{aligned} & \frac{2 \sin ^{2} \theta \sin ^{2} \theta}{1-\sin ^{2} \theta}=1 \\ & 2 \sin ^{4} \theta+\sin ^{2} \theta-1=0 \end{aligned}$ (ii) $\begin{aligned} & \left(2 \sin ^{2} \theta-1\right)\left(\sin ^{2} \theta+1\right)=0 \\ & \sin \theta=\frac{(\pm) 1}{\sqrt{2}} \\ & \theta=45^{\circ}, 135^{\circ} \\ & \theta=225^{\circ}, 315^{\circ} \end{aligned}$	M1 A1 M1 A1 A1 A1 $[4]$	Equation as function of $\sin \theta$ Or use formula on quadratic in $\sin ^{2} \theta$ Provided no excess solutions in range
6 (i) $\begin{aligned} & z=3 x+2\left(\frac{600}{x}\right) \text { or } x \frac{(z-3 x)}{2}=600 \mathrm{OE} \\ & \rightarrow \mathbf{A G} \end{aligned}$ $\text { (ii) } \begin{array}{rlr} \frac{\mathrm{d} z}{\mathrm{~d} x}=3-\frac{1200}{x^{2}} & \text { or } & \frac{\mathrm{d} z}{\mathrm{~d} y}=2-\frac{1800}{y^{2}} \\ =0 & \rightarrow x=20 & \text { or } \\ z & =0 \rightarrow y=30 \\ z & =\frac{120}{20}=120 & \\ \frac{\mathrm{~d}^{2} z}{\mathrm{~d} x^{2}} & =\frac{2400}{x^{3}} & \\ >0 & \Rightarrow \text { minimum } & \end{array}$	B1 [1] B1 M1A1 A1 $\sqrt{ }$ B1 $\sqrt{ }$ B1 [6]	Set to 0 \& attempt to solve. Allow ± 20 Ft from their x provided positive Or other valid method Dep. on $\frac{\mathrm{d}^{2} z}{\mathrm{~d} x^{2}}=\frac{k}{x^{3}}(k>0)$ or other valid method.
$7 \quad$ (i) $\begin{aligned} & \frac{3(1+2 x)^{-1}}{-1}+(c) \\ & y=\frac{3(1+2 x)^{-1}}{-2}+(c) \end{aligned}$ Sub (1, (1/2)) $\frac{1}{2}=\frac{3}{-6}+c \Rightarrow c=1$ (ii) $\begin{aligned} & (1+2 x)^{2}(>) 9 \text { or } 4 x^{2}+4 x-8(>) 0 \text { OE } \\ & 1,-2 \\ & x>1, x<-2 \text { ISW } \end{aligned}$	B1 B1 (indep) M1 A1 [4] M1 A1 A1 [3]	Division by $2 y=$ necessary Dependent on c present Use of $y=m x+c$ etc. gets $0 / 4$
8 (i) $1000,2000,3000 \ldots$ or $50,100,150 \ldots$ $\begin{aligned} & \frac{40}{2(1000+40000)} \text { or } \frac{40}{2(2000+39000)} \\ & \times 5 \% \text { of attempt at valid sum } \\ & 41000 \end{aligned}$ (ii) $1000,1000 \times 1.1,1000 \times 1.1^{2}+\ldots$ or with $a=50$ $\begin{aligned} & \frac{1000\left(1.1^{40}-1\right)}{1.1-1} \\ & 22100 \end{aligned}$	M1 M1 M1 A1 [4] M1 M1 A1 [3]	Recognise series, correct a/d (or 3 terms) Correct use of formula Can be awarded in either (i) or (ii) cao Recognise series, correct a / r (or 3 terms) Correct use of formula. Allow e.g. $r=0.1$ Or answers rounding to this

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2011	9709	11

9 (i) $A S=r \tan \theta$ Area $O A B=r^{2} \tan \theta$ or $(O A S)=1 / 2 r^{2} \tan \theta$ Area of sector $=\frac{1}{2} r^{2} \times 2 \theta\left(=r^{2} \theta\right)$ Shaded area $=r^{2}(\tan \theta-\theta) \quad$ OE $\text { (ii) } \begin{aligned} & \cos \frac{\pi}{3}=\frac{6}{O A} \Rightarrow O A=12 \\ & A P=6 \\ & A S=6 \tan \frac{\pi}{3}(\Rightarrow A B=12 \sqrt{3}) \\ & \text { Arc }(P S T)=12 \frac{\pi}{3} \\ & \text { Perimeter }=12+12 \sqrt{3}+4 \pi \end{aligned}$	M1 A1 B1 A1 [4] M1 A1 B1 B1 A1 [5]	$\operatorname{Or}(A B)=2 r \tan \theta \text { or }(A O)=\frac{r}{\cos \theta}$ Or $O A B=\frac{1}{2} \frac{r^{2}}{\cos 2 \theta} \sin 2 \theta$ Or area sector $(O P S)=1 / 2 r^{2} \theta$ Allow e.g. $r^{2} \tan \theta-1 / 2 r^{2} 2 \theta$ Or $\operatorname{arc}(P S)=6 \frac{\pi}{3}$ or $\operatorname{arc}(S T)=6 \frac{\pi}{3}$ Allow unsimplified 4π
10 (i) $2(x-1)^{2}-1$ OR $\quad a=2, b=-1, c=-1$ $A=(1,-1)$ (ii) $\begin{aligned} & 2 x^{2}-5 x-3=0 \Rightarrow(2 x+1)(x-3)=0 \quad \text { OE in } y \\ & x=-1 / 2, \quad y=31 / 2 \end{aligned}$ (iii) Mid-point of $A P=(2,3)$ $\text { Gradient of line }=\frac{1}{2} / \frac{-5}{2}=\frac{-1}{5}$ Equation is $y-3=\frac{-1}{5}(x-2) \quad \mathbf{O E}$	B1, B1, B1 B1 $\sqrt{ }$ [4] M1, M1 A1 [3] B1 $\sqrt{ }$ B1 B1 [3]	Allow alt. method for final mark Complete elim \& simplify, attempt soln. Additional (3, 7) not penalised Follow through on their A Or $y-3 \frac{1}{2}=-\frac{1}{5\left(x+\frac{1}{2}\right)}$
11 (i) $\operatorname{fg}(x)=2 x^{2}-3, \quad \operatorname{gf}(x)=4 x^{2}+4 x-1$ (ii) $\begin{aligned} & 2 a^{2}-3=4 a^{2}+4 a-1 \Rightarrow 2 a^{2}+4 a+2=0 \\ & (a+1)^{2}=0 \\ & a=-1 \end{aligned}$ (iii) $\begin{array}{ll} b^{2}-b-2=0 \rightarrow(b+1)(b-2)=0 \\ b=2 & \text { Allow } b=-1 \text { in addition } \end{array}$ (iv) $\begin{aligned} & \mathrm{f}^{-1}(x)=\frac{1}{2}(x-1) \\ & \mathrm{f}^{-1} \mathrm{~g}(x)=\frac{1}{2}\left(x^{2}-3\right) \end{aligned}$ (v) $\begin{gathered} x=(\pm) \sqrt{y+2} \\ \mathrm{~h}^{-1}(x)=-\sqrt{x+2} \end{gathered}$	B1, B1 [2] M1 M1 A1 [3] M1 A1 [2] B1 B1 $\sqrt{ }$ [2] M1 A1 [2]	fg \& gf clearly transposed gets B0B0 Dep. quadratic. Allow x for all 3 marks Allow marks in (ii) if transposed in (i) Allow in terms of x for M1 only Correct answer without working B2 Must be simplified. Ft from their f^{-1}

