	Deve 4	Mark Calenary Tasakara	9709 s11 ms 11				
	Page 4	Mark Scheme: Teachers	Syllabus Paper				
		GCE AS/A LEVEL - May/s		9709 11			
1	${}^{7}C_{2} x^{5} \left(\frac{2}{x^{2}}\right)^{2} S$ 84 or 84x as fi	SOI and leading to final answer nal answer	B2 B1 [3]	B1 for 2/3 parts correct leading to ans. If no answer: 84 <i>x</i> seen scores B2, else ${}^{7}C_{2} x^{5} \left(\frac{2}{x^{2}}\right)^{2}$ scores SCB1 only			
2	$\left(\frac{dv}{dr}\right) = 4\pi r^2$		M1				
	$=4\pi \times 10^2$		A1	SOI at any point			
	$\frac{dr}{dt} = \frac{dt}{dt} \frac{dv}{dr}$	OE used	M1	Correct link between differentials with $\frac{dr}{dt}$ finally as subject			
	$\frac{50}{4\pi \times 10^2} = \frac{1}{8\pi}$	or 0.0398	A1 [4]	Allow $\frac{50}{400\pi}$. Non-calculus methods $\frac{0}{4}$			
3	(i) Correct sh	hape – touching positive <i>x</i> -axis	B1 [1]	Ignore intersections with axes			
	(ii) $(\pi) \int (x - x)^{2} dx$	$(2)^4 dx$	M1	Use $(\pi) \int y^2 dx$ & attempt integrate but expansion before integn needs 5 terms			
	$(\pi)\left[\frac{(x-x)}{5}\right]$	$2)^{5}$	A1				
	$(\pi)[0-(-$	32)/5)]	M1	Use of limits 0, 2 on <i>their</i> $(\pi) \int y^2 dx$			
	$\frac{32\pi}{5}$ or 6	.4π	A1 [4]	cao Rotation about <i>y</i> -axis max 1/5			
4	(i) $\overrightarrow{CP} = -6i$	$+6\mathbf{j}-2\mathbf{k}$	B1				
	$\overrightarrow{CQ} = -66$	$\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$	B1 [2]				
	(ii) Scalar pro	$\overrightarrow{\text{oduct}} = 36 + 36 - 6$	M1	Use of $x_1 x_2 + y_1 y_2 + z_1 z_2$			
	$66 = \overrightarrow{CP} $	$ CQ \cos\theta$	M1	Linking everything correctly			
	$ \overrightarrow{CP} = \sqrt{1}$ Angle <i>PC</i>	$\sqrt{76}$, $ \overline{CQ} = \sqrt{81}$ $\sqrt{2}Q = 32.7^{\circ}$ (or 0.571 rad)	M1 A1	Correct magnitude for either cao 147.3° converted to 32.7° gets A0			
1			[-1]				

								<u>9709 s11 ms 1</u> 1			
Page 5			Mark Scheme: Teachers' version					Syllabus Paper			
			GCE AS/A LEVEL – May/June 2011					9709		11	
							1				
5	(i)	$\frac{2\sin^2\theta\sin^2}{1-\sin^2}$	$\frac{n^2 \theta}{\theta} = 1$		M1		Equa	tion as funct	$\sin \theta$		
		$2\sin^4\theta +$	$\sin^2 \theta - 1 = 0$	AG	A1	[2]					
	(ii)	$(2\sin^2\theta -$	$-1)(\sin^2\theta + 1) = 0$		M1	11 O		Or use formula on quadratic in $\sin^2 \theta$			
		$\sin\theta = \frac{1}{\sqrt{1-1}}$	$\frac{1}{2}$		A1						
		$\theta = 45^{\circ},$ $\theta = 225^{\circ}$	135° , 315°		A1 A1	[4]	Provided no excess solutions			itions in range	
6	(i)	$z = 3x + 2$ $\rightarrow \mathbf{AG}$	$\left(\frac{600}{x}\right)$ or $x\frac{(z-3x)}{2}$	= 600 OE	B1	[1]					
	(ii)	$\frac{\mathrm{d}z}{\mathrm{d}x} = 3 - \frac{1}{2}$	$\frac{200}{x^2}$ or	$\frac{\mathrm{d}z}{\mathrm{d}y} = 2 - \frac{1800}{y^2}$	B1						
		$= 0 \rightarrow x =$	20 or	$= 0 \rightarrow y = 30$	M1A1		Set to Et fro	o 0 & attemp	ot to so	lve. Allow ±20	0
		$z = 60 + \frac{1}{2}$	$\frac{20}{20} = 120$		A1√		Or of	ther valid me	ethod	positive	
		$\frac{\mathrm{d}^2 z}{\mathrm{d} r^2} = \frac{24}{r}$	$\frac{00}{3}$		В1√		Dep.	on $\frac{d^2 z}{dr^2} = \frac{h}{r}$	$\frac{k}{3}$ (k >	0) or other	
		$> 0 \Rightarrow m$	inimum		B1	[6]	valid	method.			
7	(i)	$\frac{3(1+2x)^{-1}}{-1}$	-1 - + (c)		B1						
		$v = \frac{3(1+1)}{2}$	$\frac{2x)^{-1}}{2} + (c)$		B1(inde	en)	Divis	sion by 2	v = ne	cessarv	
		-2 Sub (1, (1/2))			M1 Dep			endent on c p	present		
		$\frac{1}{2} = \frac{3}{-6} + \frac{3}{-6}$	$c \Longrightarrow c = 1$		A1	[4]	Use	of $y = mx + a$	c etc. g	ets 0/4	
	(ii)	$(1+2x)^2 (>$)9 or $4x^2 + 4x - 8(x^2 + 4x - 8)$	>)0 OE	M1						
		x > 1, x < -	–2 ISW		A1 A1	[3]					
8	(i)	1000, 2000	0, 3000 or 50, 100, 1	150	M1		Reco	gnise series,	correct	a/d (or 3 terms	s)
		$\frac{40}{2(1000 + 1)}$	$\frac{40}{40000}$ or $\frac{40}{2(2000+100)}$) 39000)	M1		Corre	ect use of for	mula		
		× 5% of at 41000	tempt at valid sum	,	M1 A1	F 43	Can l cao	be awarded in	n either	• (i) or (ii)	
	(ii)	1000, 100	$0 \times 1.1, 1000 \times 1.1^2 +$	or with $a = 50$	M1	[4]	Reco	gnise series,	correct	a/r (or 3 terms	s)
		$1000(1.1^4)$	(v - 1)		M1		Corre	ect use of for	mula. A	Allow e.g. $r = 0$.).1
		1.1– 22100	1		A1	[3]	Or ar	nswers round	ing to t	his	

							<u>9709_s11_ms_11</u>				
Page 6			Mark Scheme: Teachers	Syllabus	Paper						
			GCE AS/A LEVEL – May/	GCE AS/A LEVEL – May/June 2011				11			
						1					
9	(i)	$AS = r \tan \theta$	$n\theta$	M1		Or $(AB) = 2r \tan \theta$ or $(AO) = \frac{r}{\cos \theta}$					
		Area $OAB = r^{-1} \tan \theta$ or $(OAS) = \frac{1}{2}r^{-1} \tan \theta$ Area of sector $= \frac{1}{2}r^{2} \times 2\theta (=r^{2}\theta)$		A1 B1		Or C	$DAB = \frac{1}{r^2}$ si	n 2 <i>θ</i>			
		Shaded area = $r^2(\tan \theta - \theta)$ OE		A1	[4]	$2 \cos 2\theta$ Or area sector (<i>OPS</i>) = $\frac{1}{2}r^2\theta$					
		_	6			Allov	w e.g. $r^2 \tan \theta - \frac{1}{2}$	$V_2 r^2 2\theta$			
	(ii)	$\cos\frac{\pi}{3} = -\frac{\pi}{6}$	$\frac{\partial}{\partial A} \Rightarrow OA = 12$	M1							
		AP = 6	AP = 6								
		$AS = 6\tan\frac{\pi}{3} (\Rightarrow AB = 12\sqrt{3})$		B1							
		Arc (<i>PST</i>) = $12\frac{\pi}{3}$				Or ar	$\operatorname{re} (PS) = 6\frac{\pi}{3} \text{ or}$	arc $(ST) = 6\frac{\pi}{3}$	<u>r</u> }		
		Perimeter	$= 12 + 12\sqrt{3} + 4\pi$	A1	[5]	Allov	w unsimplified 4π	τ			
10	(i)	$2(x-1)^2 - A = (1, -1)^2$	-1 OR $a = 2, b = -1, c = -1$	B1, B1, B1√	B1	Allov	w alt. method for t	final mark			
	(ii)	$2x^2 - 5x$ $x = -\frac{1}{2},$	$-3 = 0 \Rightarrow (2x+1)(x-3) = 0 \text{OE in } y$ $y = 3\frac{1}{2}$	M1, M1 A1	[3]	Com Addi	plete elim & simp tional (3, 7) not p	olify, attempt so enalised	oln.		
	(iii)	Mid-point	of $AP = (2, 3)$	В1√	[3]	Follo	ow through on <i>thei</i>	ir A			
		Gradient o	of line = $\frac{\frac{1}{2}}{\frac{-5}{2}} = \frac{-1}{5}$	B1							
		Equation i	is $y-3 = \frac{-1}{5}(x-2)$ OE	B1	[3]	Or y	$y - 3\frac{1}{2} = -\frac{1}{5(x + \frac{1}{2})}$	<u>_</u>)			
11	(i)	fg(x) = 2x	$d^2 - 3$, $gf(x) = 4x^2 + 4x - 1$	B1, B1	[2]	fg &	gf clearly transpo	sed gets B0B0			
	(ii)	2a2 - 3 = $(a+1)2 =$ $a = -1$	$4a^{2} + 4a - 1 \Longrightarrow 2a^{2} + 4a + 2 = 0$	M1 M1 A1	503	Dep. Allow	quadratic. Allow w marks in (ii) if t	<i>x</i> for all 3 marl ransposed in (i	ks i)		
	(iii)	$b^2 - b - 2$ $b = 2$	$= 0 \rightarrow (b+1)(b-2) = 0$ Allow $b = -1$ in addition	M1 A1	[3]	Allow Corre	w in terms of x for ect answer withou	r M1 only It working B2			
	(iv)	$\mathbf{f}^{-1}(x) = \frac{1}{2}$	(x-1)	B1	L-1						
		$\mathbf{f}^{-1}\mathbf{g}(x) = -\frac{1}{2}$	$\frac{1}{2}(x^2-3)$	В1√	[2]	Must	t be simplified. Ft	t from <i>their</i> f^{-1}			
	(v)	$x = (\pm)\sqrt{2}$ $h^{-1}(x) = -4$	$\frac{y+2}{\sqrt{x+2}}$	M1 A1	[2]						