		970	9 s10 ms 72
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	72

1	(i)	1/12	B1 [1]	Accept 0.0833
	(ii)	trains arrive every 12 minutes	B1 [1]	must have 'every 12 minutes'
2	(i)	$\begin{array}{l} 0.145 \\ = 87 \ / \ n \\ n = 600 \end{array}$	B1 M1 A1 [3]	correct mid-point equating their mid-point with 87 / <i>n</i> correct answer
	(ii)	$0.0321 = z \times \sqrt{\frac{0.145(1 - 0.145)}{600}}$	B1	0.0321 seen or implied
			M1	Equating half-width with $z \times \sqrt{\frac{pq}{n}}$
		$z = 2.233 \Phi(z) = 0.9872$	M1	Correct method to find width of CI
		width of CI is $1 - 2 \times (1 - 0.9872)$	A1	Correct answer
		$\alpha = 97.4\%$	[4]	
3	(i)	$z = \frac{2.55 - 2.62}{0.3/\sqrt{45}} = -1.565$	M1	Standardising no cc
		P (<i>z</i> > −1.565) = 0.941	M1 A1 [3]	Dividing 0.3 by $\sqrt{45}$ as denominator Correct answer (Accept equivalent method using totals)
	(ii)	rejection region is $m < a_1$ and $m > a_2$		
		where $\frac{a_1 - 2.62}{0.3 / \sqrt{30}} = -1.645$	B1	±1.645 seen
		and $\frac{a_2 - 2.62}{0.3/\sqrt{30}} = 1.645$	M1	one correct unsimplified equation of correct form
			M1	second unsimplified equation of correct form (or clear use of 1-tail test and ± 1.282 used)
		m < 2.53 and $m > 2.71$	A1 [4]	correct answer

		_			-	9709	<u>s10_ms_72</u>
Page 5		ge 5	Mark Scheme: Teachers' version			Syllabus	Paper
			GCE AS/A LEVEL – May	/June	2010	9709	72
4	(i)	Mr - 5Mr $P(Mr > 5)$	s ~ N(512 - 5×89, 62 ² + 25×7.4 ²) ~ N(67, 5213) Mrs) = P(Mr - 5 Mrs > 0) = P $\left(z > \frac{0-67}{\sqrt{5212}}\right)$	B1 B1 M1 M1	Correct unsin Correct unsin Using distribu Standardising	nplified mean nplified variance ution Mr – 5 Mrs g and using tables	
			= P(z > -0.9280) = 0.823	A1 [5]	Correct answ	er	
	(ii)	Mr + Mrs	$\sim N(601, 62^2 + 7.4^2)$	B1	Correct mean	and variance	
		E[5/8(Mr Var[5/8(N	+ Mrs)] = 376 miles $[r + Mrs)] = \frac{25}{64} \times 3898.76$	B1	Correct answ SR Two sepa	er rate answers 320 a	und 55.6 B1
		= 1520 sd $= 39.0$	miles	B1 [3]	Correct answ	er	
5	(i)	$\int_{0}^{5} k e^{0.2t} dt$	=1	M1	Equating to 1	and attempting to	integrate
		$\left\lfloor \frac{k}{0.2} e^{1.0} \right\rfloor$ $\frac{k}{0.2} (e-1)$	$-\left\lfloor \frac{k}{0.2} e^0 \right\rfloor = 1$ $= 1$	A1	Correct integ	rand and limits	
		$k = \frac{1}{5(e - e^{-1})}$		A1 [3]	Correct answ	er legitimately obt	ained
	(ii)	0	5	B1 B1 [2]	Correct curve	e shape ontal lines (need to	o see a 5)
	(iii)	$\int_{0}^{T} k e^{0.2t} dt$	= 0.2	M1	Equation rela	ting <i>T</i> and 0.2 or 0).8
		$\begin{bmatrix} 5ke^{0.2T} \end{bmatrix} - e^{0.2T} = \frac{0.2}{5}$	$\left[5k\right] = 0.2$ $\frac{2}{5} + 1 = 1.344$	A1	Correct equat	tion (can be in ' k ')	
		T = 1.48 (seconds)	A1 [3]	Correct answ	er	

						970	9_s10_ms_72
Page 6		e 6	Mark Scheme: Teachers' version			Syllabus	Paper
			GCE AS/A LEVEL – May	/June :	2010	9709	72
6	(i) 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\lambda_{A} = np = 0$ $\lambda_{B} = 0.058$ otal $\lambda = 4$. P(more that $= 1 - e^{-4.4}$ = 1 - 0.185 = 0.815	$0.022 \times 55 = 1.21 \times 55 = 3.19 \times 10^{-10} \text{ m} 2) = 1 - P(0, 1, 2) \times 10^{-10} (1 + 4.4 + \frac{4.4^2}{2!})$	M1 A1 M1 A1 [4]	Two different Correct total 4 combinations Finding $1 - P$ one end error (Or combinat find $1 - P(\leq 2$ Correct answe	t np (can be implied 4.4 (or alt method 0,0 1,0 etc stated (0, 1, 2), Poisson ions method – us (2))	ied) 1: 6 correct 1 and used) , any mean, allow <i>e</i> at least 4 and
	(ii) 7 H 1 (<i>v</i> 1	$\lambda = 0.08n$ P(at least 1 $1 - e^{-0.08n} >$ $0.01 > e^{-0.02n} = 0.02$ n > 57.6 east value	stained tablecloth $) = 1 - P(0)$ 0.99 8n of $n = 58$	B1 M1 M1 A1 [4]	Correct λ Equation of correct form relating their λ and Valid attempt to solve equation of correct for by logs or trial and error Correct answer (SR Accept use of Binomial leading to $n = 5$		
7	(i) 7 r V H H H	Type I error number of when it has $P(0) = e^{-5.2}$ $P(1) = e^{-5.2}$ $P(2) = e^{-5.2}$ $P(2) = e^{-5.2}$	by is made when we say the white blood cells has decreased sn't. = 0.005516 (5.2) = $0.02868 \Sigma < 0.10$ (5.2 ² /2) = $0.07458 \Sigma > 0.10$ rror) = 0.0342	B1 M1 M1* A1dep [4]	Correct and re Evaluating at Comparing th probs) Correct answe	elating to question least 2 of $P(X = 0)$ least 2 of Point 2 of P	n 0, 1, 2) h 10% (must be Σ us M
	(ii) H H 2 2	H ₀ : $\lambda = 5.2$ H ₁ : $\lambda < 5.2$ P(0+1+2) = 2 not in C Accept H ₀ .	= 0.1087 > 10% Region. Not enough evidence to say the blood cells has decreased.	B1 M1 A1 [3]	Both hypothe Stating 2 is no or evaluating again Correct concl	ses correct ot in the critical r P(0, 1, 2) and co usion no contrad	egion from above, mparing with 10% ictions
	(iii) I	P(Type II o	error) = 1 - P(0, 1) = 1 - e ^{-4.1} (1 + 4.1) = 0.915	B1 M1 A1 [3]	Identifying co (indep) Some mean 4.1 Correct answe	orrect area form of (Poissor er	n) expression with