Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	72

1 (i) $1 / 12$	B1 [1]	Accept 0.0833
(ii) trains arrive every 12 minutes	B1 [1]	must have 'every 12 minutes'
$2 \quad \text { (i) } \begin{array}{ll} & 0.145 \\ & =87 / n \\ & n=600 \end{array}$	B1 M1 A1 [3]	correct mid-point equating their mid-point with $87 / n$ correct answer
(ii) $\begin{aligned} & 0.0321=z \times \sqrt{\frac{0.145(1-0.145)}{600}} \\ & z=2.233 \quad \Phi(z)=0.9872 \end{aligned}$ width of CI is $1-2 \times(1-0.9872)$ $\alpha=97.4 \%$	B1 M1 M1 A1 [4]	0.0321 seen or implied Equating half-width with $z \times \sqrt{\frac{p q}{n}}$ Correct method to find width of CI Correct answer
$3 \quad$ (i) $z=\frac{2.55-2.62}{0.3 / \sqrt{45}}=-1.565$ $\mathrm{P}(z>-1.565)=0.941$	M1 M1 A1 [3]	Standardising no cc Dividing 0.3 by $\sqrt{45}$ as denominator Correct answer (Accept equivalent method using totals)
(ii) rejection region is $m<a_{1}$ and $m>a_{2}$ where $\frac{a_{1}-2.62}{0.3 / \sqrt{30}}=-1.645$ and $\frac{a_{2}-2.62}{0.3 / \sqrt{30}}=1.645$ $m<2.53$ and $m>2.71$	B1 M1 M1 A1 [4]	$\pm 1.645 \text { seen }$ one correct unsimplified equation of correct form second unsimplified equation of correct form (or clear use of 1-tail test and ± 1.282 used) correct answer

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

4 (i) $\begin{aligned} \mathrm{Mr}-5 \mathrm{Mrs} & \sim \mathrm{~N}\left(512-5 \times 89,62^{2}+25 \times 7.4^{2}\right) \\ & \sim \mathrm{N}(67,5213) \\ \mathrm{P}(\mathrm{Mr}>5 \mathrm{Mrs}) & =\mathrm{P}(\mathrm{Mr}-5 \mathrm{Mrs}>0) \\ & =\mathrm{P}\left(z>\frac{0-67}{\sqrt{5213}}\right) \\ & =\mathrm{P}(z>-0.9280) \\ & =0.823 \end{aligned}$	B1 B1 M1 M1 A1 [5]	Correct unsimplified mean Correct unsimplified variance Using distribution $\mathrm{Mr}-5 \mathrm{Mrs}$ Standardising and using tables Correct answer
$\text { (ii) } \begin{aligned} & \mathrm{Mr}+\mathrm{Mrs} \sim \mathrm{~N}\left(601,62^{2}+7.4^{2}\right) \\ & \\ & \mathrm{E}[5 / 8(\mathrm{Mr}+\mathrm{Mrs})]=376 \text { miles } \\ & \operatorname{Var}[5 / 8(\mathrm{Mr}+\mathrm{Mrs})]=\frac{25}{64} \times 3898.76 \\ & =1520 \\ & \text { sd }=39.0 \text { miles } \end{aligned}$	B1 B1 B1 [3]	Correct mean and variance Correct answer SR Two separate answers 320 and 55.6 B1 Correct answer
$5 \text { (i) } \begin{aligned} & \int_{0}^{5} k \mathrm{e}^{0.2 t} d t=1 \\ & {\left[\frac{k}{0.2} \mathrm{e}^{1.0}\right]-\left[\frac{k}{0.2} \mathrm{e}^{0}\right]=1 } \\ & \frac{k}{0.2}(\mathrm{e}-1)=1 \\ & k=\frac{1}{5(\mathrm{e}-1)} \mathrm{AG} \end{aligned}$	M1 A1 A1 [3]	Equating to 1 and attempting to integrate Correct integrand and limits Correct answer legitimately obtained
(ii)	B1 B1 [2]	Correct curve shape Correct horizontal lines (need to see a 5)
$\text { (iii) } \begin{aligned} & \int_{0}^{T} k \mathrm{e}^{0.2 t} d t=0.2 \\ & {\left[5 k \mathrm{e}^{0.2 T}\right]-[5 k]=0.2 } \\ & \mathrm{e}^{0.2 T}=\frac{0.2}{5 k}+1=1.344 \\ & T=1.48 \text { (seconds) } \end{aligned}$	$\begin{array}{\|r} \hline \text { M1 } \\ \text { A1 } \\ \\ \text { A1 } \\ \quad[3] \end{array}$	Equation relating T and 0.2 or 0.8 Correct equation (can be in ' k ') Correct answer

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	72

6 (i) $\begin{aligned} & \lambda_{\mathrm{A}}=n p=0.022 \times 55=1.21 \\ & \lambda_{\mathrm{B}}=0.058 \times 55=3.19 \\ & \text { total } \lambda=4.4 \\ & \mathrm{P}(\text { more than } 2)=1-\mathrm{P}(0,1,2) \\ & =1-\mathrm{e}^{-4.4}\left(1+4.4+\frac{4.4^{2}}{2!}\right) \\ & =1-0.185 \\ & =0.815 \end{aligned}$	M1 A1 M1 A1 [4]	Two different $n p$ (can be implied) Correct total 4.4 (or alt method: 6 correct combinations $0,01,0$ etc stated and used) Finding $1-\mathrm{P}(0,1,2)$, Poisson, any mean, allow one end error. (Or combinations method - use at least 4 and find $1-\mathrm{P}(\leqslant 2)$) Correct answer
$\text { (ii) } \begin{aligned} & \lambda=0.08 n \\ & \mathrm{P}(\text { at least } 1 \text { stained tablecloth })=1-\mathrm{P}(0) \\ & 1-\mathrm{e}^{-0.08 n}>0.99 \\ & 0.01>\mathrm{e}^{-0.08 n} \\ & n>57.6 \\ & \\ & \text { least value of } n=58 \end{aligned}$	B1 M1 M1 A1 A1 [4]	Correct λ Equation of correct form relating their λ and 0.99 Valid attempt to solve equation of correct form by logs or trial and error Correct answer (SR Accept use of Binomial leading to $n=57$)
7 (i) Type I error is made when we say the number of white blood cells has decreased when it hasn't. $\begin{aligned} & \mathrm{P}(0)=\mathrm{e}^{-5.2}=0.005516 \\ & \mathrm{P}(1)=\mathrm{e}^{-5.2}(5.2)=0.02868 \Sigma<0.10 \\ & \mathrm{P}(2)=\mathrm{e}^{-5.2}\left(5.2^{2} / 2\right)=0.07458 \Sigma>0.10 \\ & \mathrm{P}(\text { Type } \mathrm{I} \text { error })=0.0342 \end{aligned}$	B1 M1 M1* A1dep [4]	Correct and relating to question Evaluating at least 2 of $\mathrm{P}(X=0,1,2)$ Comparing their $\Sigma 3$ probs with 10% (must be Σ probs) Correct answer, dep on previous M
(ii) $\begin{aligned} & \mathrm{H}_{0}: \lambda=5.2 \\ & \mathrm{H}_{1}: \lambda<5.2 \\ & \mathrm{P}(0+1+2)=0.1087>10 \% \end{aligned}$ 2 not in C Region. Accept H_{0}. Not enough evidence to say the number of blood cells has decreased.	B1 M1 A1 [3]	Both hypotheses correct Stating 2 is not in the critical region from above, or evaluating $\mathrm{P}(0,1,2)$ and comparing with 10% again Correct conclusion no contradictions
$\text { (iii) } \begin{aligned} \mathrm{P}(\text { Type II error }) & =1-\mathrm{P}(0,1) \\ & =1-\mathrm{e}^{-4.1}(1+4.1) \\ & =0.915 \end{aligned}$	B1 M1 A1 [3]	Identifying correct area (indep) Some form of (Poisson) expression with mean 4.1 Correct answer

