9709 s10 ms 61

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	61

$1 \begin{aligned} & a+b=0.45 \\ & \\ & -3 a-b+1.6=0.75 \\ & \\ & \\ & a=0.2 \quad b=0.25 \end{aligned}$	B1 M1 A1 A1 [4]	Correct sum probs $=1$ o.e. Attempt at $\Sigma x p=0.75$ Correct a Correct b
2 (i)	B1 B1 B1 [3]	Correct stem Correct leaves must be sorted and accurate Key; must have people o.e
(ii) median $=19$ people $\mathrm{LQ}=10, \mathrm{UQ}=24$ IQ range $=24-10=14$ people	B1 B1 B1ft [3]	Correct median Correct quartiles Ft their quartiles
(iii) median because mode could be any number which is duplicated more than twice	${ }^{\text {B1 }}$	Correct answer must say something about the mode being not much use or another sensible reason
$\begin{aligned} & 3(+/-) 1.045,(+/-) 0.313 \\ & 20.9-\mu=-0.313 \sigma \\ & 30-\mu=1.045 \sigma \\ & \sigma=6.70 \\ & \mu=23.0 \end{aligned}$	B1, B1 M1 A1 A1 [5]	1 correct z-value, the other correct z-value. Valid attempt to solve 2 equations relating to $\mu, \sigma, 30,20.9$. No $\sqrt{\sigma}, \sigma^{2}$ correct answer correct answer
4 (i) $\mathrm{sd}=0$ so all rides must cost the same i.e. the mean.	$\mathrm{B} 1^{*}$ B1 dep [2]	Must see this and some relevant comment, e.g. no change o.e.
$\text { (ii) } \begin{aligned} & 1 \times 2.5+3 \times 2.5+6 \times x=3.76 \times 10 \\ & 6 x=37.6-10 \\ & x=4.6 \text { for revolving drum } \\ & \sigma^{2}=\left(2.5^{2} \times 1+2.5^{2} \times 3+4.6^{2} \times 6\right) / 10-3.76^{2} \\ & \sigma=1.03 \end{aligned}$	M1 A1 A1 M1 A1 [5]	attempt to find cost of revolving drum ride correct equation correct x substituting in correct variance formula correct answer

Page 5 Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2010	9709	61

$\begin{aligned} 5 \quad \text { (i) } & \mathrm{P}(X=2))=(0.25)^{2} \times(0.75)^{6} \times{ }^{8} \mathrm{C}_{2} \\ = & 0.311 \end{aligned}$	M1 A1 [2]	3 term binomial expression involving ${ }^{8} \mathrm{C}$ something, powers summing to 8 correct answer
(ii) $12 \times 0.25=3,<5$ so not possible	${ }^{\text {B1 }}$	
	B1 M1 M1 M1 A1 [5]	40×0.25 and $40 \times 0.25 \times 0.75$ seen, o.e. standardising, \pm, with or without cc, must have sq rt continuity correction 12.5 or 13.5 correct area, i.e. <0.5 legit correct answer
6 (i) $\begin{aligned} & { }^{10} \mathrm{C}_{1}+{ }^{10} \mathrm{C}_{3}+{ }^{10} \mathrm{C}_{5}+{ }^{10} \mathrm{C}_{7}+{ }^{10} \mathrm{C}_{9} \\ & =512 \end{aligned}$	M1 A1 A1 [3]	Summing some ${ }^{10} \mathrm{C}$ combinations with odd numbers, all different At least 3 correct unsimplified expressions Correct answer
$\text { (ii) } \begin{aligned} & 6!\times 7 \times 6 \times 5 \\ & =151200 \end{aligned}$	B1 M1 A1 [3]	6 ! seen multiplying by ${ }^{7} \mathrm{P}_{3}$ o.e. correct answer
$\begin{gathered} \text { (iii) } 12!/(4!\times 7!) \\ =3960 \end{gathered}$	B1 M1 A1 [3]	12! Seen dividing by $4!7$! correct answer

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	61

$\begin{aligned} & 7 \quad \text { (i) } \quad \mathrm{P}\left(1^{\text {st }} \text { correct }\right)=0.7+0.2 \times 0.95 \\ &=0.89 \mathrm{AG} \end{aligned}$	B1	
(ii)	M1	Considering any 2 of CC, СHA, HAC or HAHP [where $C=$ Peter correct, $H=$ ask for help, $A=$ audience correct, $P=$ phone correct] or tree diagram with 'top half' labels and probs shown
	M1	Considering other 2
	M1	Summing 4 probabilities
$\mathrm{P}(C C)=0.7 \times 0.7(=0.49)$	B1	Two correct probabilities
$\mathrm{P}($ CHA $)=0.7 \times 0.2 \times 0.95(=0.133)$		
$\mathrm{P}(H A C)=0.2 \times 0.95 \times 0.7(=0.133)$	B1	Three correct probabilities
$\mathrm{P}(H A H P)=0.2 \times 0.95 \times 0.2 \times 0.65(=0.0247)$		
$\mathrm{P}($ both correctly answered $)=0.781$	$\mathrm{A}_{[6]}$	Correct
(iii) P (audience \| both correct)		
$=\underline{P(C H A)+P(H A C)+P(H A H P)}$	M1*	Summing two or three 3-factor terms in numerator of a fraction
ans (ii)		
$=$		
$\underline{0.7 \times 0.2 \times 0.95+0.2 \times 0.95 \times 0.7+0.2 \times 0.95 \times 0.2 \times 0.65}$	M1dep	Dividing by their (ii)
0.7807		
$\begin{aligned} & =0.2907 / 0.7807 \\ & =0.372 \end{aligned}$		
	A1	Correct answer

