Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	51

1 c of m of $\operatorname{arc}=20 \sin (\pi / 2) /(\pi / 2)$ $(2+0.9) \bar{x}=2 \times 20 \sin (\pi / 2) /(\pi / 2)$ Distance is 8.78 cm	B1 M1 A1 A1 [4]	For attempting to take moments about the diameter
2 (i) $\begin{aligned} & \tan 35^{\circ}=\mathrm{r} / 7.5 \\ & \mathrm{r}=5.25 \end{aligned}$	M1 A1ft A1 [3]	For using the idea that the c.m. is vertically above the lowest point of contact ft using their c of m from the base
(ii) $\left[\mu \mathrm{mg} \cos 35^{\circ}>\mathrm{mgsin} 35^{\circ}\right]$ $\mu>\tan 35^{\circ} \rightarrow$ Coefficient is greater than 0.7	M1 A1 [2]	For using 'no sliding $\rightarrow \mu \mathrm{R}>$ weight component' Do not allow $\mu \geqslant 0.7$ AG
$3 \text { (i) } \begin{aligned} & \mathrm{mg}=\mathrm{T} \cos \theta \\ & \\ & \mathrm{ma}=\mathrm{T} \sin \theta \\ & \\ & \\ & \\ & \\ & \\ & \mathrm{~T}=\mathrm{T} \theta=0.24 \times 10 / \mathrm{g}=0.75 \\ & \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ [4]	SR B1 not B 2 for $\tan \theta=\mathrm{v}^{2} / \mathrm{gr}$ or a / g used AG For using $\mathrm{T} \cos \theta=\mathrm{mg}$ to find T
(ii) $\left[\mathrm{v}^{2}=7.5 \times 2 \sin \theta\right]$ Speed is $3 \mathrm{~ms}^{-1}$	M1 A1 [2]	For using $\mathrm{v}^{2}=$ ar to find v
4 Weight split is $9 \mathrm{~N}: 6 \mathrm{~N}$ For lamina $9 \times 0.75+6 \times 0.5$ $=\mathrm{T} \times 1.5 \sin 30^{\circ}$ Tension is 13 N Alternatively $\begin{aligned} & {\left[\left(1.5^{2}+\frac{1}{2} 1.5 \times 2\right) \quad \bar{x}=1.5^{2} \times 0.75+\frac{1}{2} 1.5 \times 2 \times 0.5\right]} \\ & \bar{x}=0.65 \\ & 15 \times 0.65=\mathrm{T} \times 1.5 \sin 30^{\circ} \\ & \text { Tension is } 13 \mathrm{~N} \end{aligned}$	B1 M1 A1ft A1 A1 [5] M1 A1 M1 A1ft A1 [5]	For taking moments about A For using A $\bar{x}=\mathrm{A}_{1} x_{1}+\mathrm{A}_{2} x_{2}$ For taking moments about A

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	51

	B1 M1 A1 A1 [4]	For using $\cos \theta=1 / \sec \theta$ and the given identity to obtain a quadratic in $\mathrm{T}(\tan \theta)$ AEF AG
(ii) $\left[x=\tan \theta \cos ^{2} \theta / 0.0125\right.$ or $\left.x=20^{2} \sin 2 \theta / \mathrm{g}\right]$ For $\tan \theta=0.75$, distance is 38.4 m For $\tan \theta=4.25$, distance is 17.8 m	M1 A1 A1 [3]	For solving $y=0$ for x or for using $\mathrm{R}=\mathrm{V}^{2} \sin 2 \theta / \mathrm{g}$
(iii) For sketching two parabolic arcs which intersect once, both starting at the origin, each with $y \geqslant 0$ throughout, and each returning to the x -axis, the arc for which the angle of projection is smaller having the greater range. The ranges appear significantly greater than x at the intersection, and slightly greater, respectively.	B1 B1 [2]	
6 (i) $\left[0.35 \mathrm{~g}=2 \mathrm{~T}\left\{0.7 /\left(2.4^{2}+0.7^{2}\right)^{1 / 2}\right\}\right]$ Tension is 6.25 N $[6.25=\lambda \times 1 / 4]$ Modulus is 25 N	M1 A1 M1 A1 [4]	For resolving forces on P vertically For using $\mathrm{T}=\lambda x / \mathrm{L}$ AG
(ii) EE on release $=25 \times 2^{2} /(2 \times 4)$ EE when P is at $\mathrm{M}=25 \times 0.8^{2} /(2 \times 4)$ $25 \times 2^{2} /(2 \times 4)=0.35 \mathrm{~g} \times 1.8+25 \times 0.8^{2} /(2 \times 4)+1 / 20.35 \mathrm{v}^{2}$ Speed is $4.90 \mathrm{~ms}^{-1}$	M1 A1 A1 M1 A1 A1 [6]	For using $\mathrm{EE}=\lambda x^{2} / 2 \mathrm{~L}$ For using EE on release $=\mathrm{mgh}+\mathrm{EE}$ when P is at $M+\frac{1}{2} \mathrm{mv}^{2}$
$7 \quad$ (i) $\begin{aligned} & {[0.25 \mathrm{v}(\mathrm{dv} / \mathrm{dx})=-(5-x)]} \\ & {\left[\int \mathrm{vdv}=4 \int(\mathrm{x}-5) \mathrm{dx}\right]} \\ & \mathrm{v}^{2} / 2=4(x-5)^{2} / 2(+\mathrm{A}) \\ & \mathrm{v}^{2}=4(x-5)^{2} \end{aligned}$ Selects correct square root to obtain $\mathrm{v}=10-2 x$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ [6]	For using Newton's second law and $\mathrm{a}=\mathrm{v}(\mathrm{d} \mathrm{v} / \mathrm{dx})$ For separating variables and attempting to integrate For using $\mathrm{v}(0)=10$ Any correct expression in x AG
$\text { (ii) } \begin{aligned} & {[}\left.\int \frac{\mathrm{dx}}{10-2 x}=\int \mathrm{dt}\right] \\ &-\frac{1}{2} \ln (10-2 x)=\mathrm{t}\left(-\frac{1}{2} \ln \mathrm{~B}\right) \\ & \mathrm{B}=10(\text { or equivalent }) \\ & \mathrm{x}=5\left(1-\mathrm{e}^{-2 t}\right) \\ & 0<\mathrm{e}^{-2 t}<1 \text { for all } \mathrm{t} \rightarrow x<5 \text { for all } \mathrm{t} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \\ & \text { A1 } \\ & \text { B1ft } \\ & \text { B1 } \\ & {[5]} \end{aligned}$	For using $\mathrm{v}=\mathrm{dx} / \mathrm{dt}$ and separating variables $\begin{aligned} & \mathrm{ft} x=(\mathrm{B} / 2)\left(1-\mathrm{e}^{-2 t}\right) \\ & \mathrm{AG} \end{aligned}$

