	Page	e 4	Mark Sch	9709_s10_ms_4 Syllabus Paper				
			GCE AS/A	LEVEL – Ma	ay/June	2010	9709 43	
l	$\alpha = 4$ [R =	= 6.8 - 7.3	5] cos48.9°] resultant is 2 N		M1 A1 M1 A1	[4]	For using $R_y = 0$ For using $R = R_x$	
2	[1.2 - 0.24t = 0.6] t = 2.5 [s = 0.6t ² - 0.04t ³] s = (0.6 × 2.5 ² - 0.04 × 2.5 ³) - (0 - 0)				M1 A1 M1 DM1		For using $a = dv/dt$ and attempting to solve $a = 0.6$ For using $s = \int v dt$ For using limits 0 to 2.5 or equivalent (dependent on integration)	
;	Displacement is 3.125 m (i) $[WD = 25 \times 40 \cos 30^{\circ}]$ Work done is 866 J			A1 M1 A1	[5]	Accept 3.12 or 3.13 For using WD = $Fdcos\theta$		
		WOIR do			111	[2]		
	(ii)	KE gain $\frac{1}{2} 35(v^2 - v^2)$	$\cos 30^\circ = 866 + \text{KE}$ s is 866 J $- 1.2^2) = 866$ 7.14 ms ⁻¹	gain]	M1 A1ft M1 A1ft A1	[5]	For using WD by P = WD against resistance + KE gain ft incorrect ans (i) For using KE gain = $\frac{1}{2}$ m(v ² – u ²) ft incorrect KE	
							SR (max 2/3 for the last three marks) for using Newton's second law and constant acceleration formula $50 \cos 30^\circ - 25 \cos 30^\circ = 35a$ and $v^2 = 1.2^2 + 2 \times 40a$ M1 \rightarrow speed is 7.14 ms ⁻¹ A1	
•	(i)	0.36g sin Tension	$160^{\circ} - T = 0.36 \times 0.2$ is 3.03 N	5	B1 B1	[2]	AG	
	(ii)	$\begin{array}{l} T\pm F-0.24g\ sin60^\circ=0.24\times 0.25\\ F=3.03-0.24g\ sin60^\circ-0.24\times 0.25 \end{array}$			M1 A1 A1		For applying Newton's second law to	
	Coe	R = 0.24	-	(R = 1.2)	B1 M1 A1	[6]	For using $\mu = F/R$	
;	(i) [s =	AB = 1.5	1.1) × 1.2; 1.1 = 1.4 5 m or d = 0.25 or AB = 1.5 m	$+(-d) \times 1.2]$	M1 A1 B1ft		For using $s = \frac{1}{2} (u + v)t$ to find AB or $v = u + at$ to find d	

Pa	ige	e 5	Mark Scheme: Teach	Syllabus Paper			
			GCE AS/A LEVEL – Ma	ay/June 2	2010	9709 43	
(i		$[0 = u^2 + 2]$ Speed is 1 Time is 4	M1 A1 B1ft	[3]	For using $0 = u^2 + 2(-d)s$ to find u or $s = 0 - \frac{1}{2}(-d)t^2$ to find t		
(ii			bining (0, 1.4) and (1.2, 1.1) bining (1.2, -1) and (5.2, 0)	B1 B1ft	[2]	ft wrong answer(s) in (ii)	
						SR (max 1/2) For two correct lines and values missing B1ft	
(i	(i) $[2a = 3.5]$ Acceleration is 1.75 ms ⁻²		M1		For using $v = 0 + at$		
		[1.75 = gs]	$\sin \alpha$] or ² = gh; s = 0.5 × 3.5 × 2 and	A1 M1		For using $a = gsin \alpha$ or for using $\frac{1}{2}mv^2 = mgh$, $s = \frac{1}{2}vt$ and $sin\alpha = h/s$	
			$0.1^{\circ} \text{ or } 0.176^{\circ}$	A1	[4]		
(i			$\frac{1}{2} + \{(a^2)t + \frac{1}{2}at^2\}]$ a $(t+2)^2$]	M1		For constructing an expression in t for s _r	
			$\frac{1}{2}a^{2} + (a^{2})t + \frac{1}{2}at^{2} - \frac{1}{2}at^{2}$	M1		For constructing an expression in t for $s_P - s_O$	
		$2 \times 1.75 + $ [4.9 = 2a	- 2 × 1.75t + 2at]	A1 M1		Correct expression for $s_P - s_Q$ For using $s_P - s_Q = 4.9$ to construct an	
		t = 0.4		A1	[5]	equation in t	
(i)	R = 4500	N	B1			
C.	·	$3150 = \mu^2$		M1		For using limiting equilibrium of boxes $\Rightarrow P = \mu R$	
		Coefficier	nt is 0.7	A1	[3]		
(i	i)			M1		For resolving forces horizontally on A when A is about to slide	
		0.2×200	g = 200a	A1		AG	
			$g \rightarrow a \leq 2$	A1			
					[3]		
(i	ii)	[P - F = 4]	$50a; P - F - F_2 = 250a]$	M1		For applying Newton's second law to A and B combined or to B	
			$50 + 450 \times 2 \text{ or}$ _{ix} = 3150 + 0.2 × 2000 + 250 × 2	A1			
		$P_{max} = 403$		A1	[3]		