Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	43

1	$\begin{aligned} & {[7.3 \sin \alpha=5.5]} \\ & \alpha=48.9 \\ & {\left[\mathrm{R}=6.8-7.3 \cos 48.9^{\circ}\right]} \\ & \text { Magnitude of resultant is } 2 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	For using $\mathrm{R}_{\mathrm{y}}=0$ For using $\mathrm{R}=\mathrm{R}_{\mathrm{x}}$
2	$\begin{aligned} & {[1.2-0.24 t=0.6]} \\ & t=2.5 \\ & {\left[s=0.6 \mathrm{t}^{2}-0.04 \mathrm{t}^{3}\right]} \\ & s=\left(0.6 \times 2.5^{2}-0.04 \times 2.5^{3}\right)-(0-0) \end{aligned}$ Displacement is 3.125 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	[5]	For using $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$ and attempting to solve $\mathrm{a}=0.6$ For using $s=\int v d t$ For using limits 0 to 2.5 or equivalent (dependent on integration) Accept 3.12 or 3.13
3	(i) $\left[\mathrm{WD}=25 \times 40 \cos 30^{\circ}\right]$ Work done is 866 J	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		For using WD $=$ Fdcos θ
	(ii) $\left[50 \times 40 \cos 30^{\circ}=866+K E\right.$ gain $]$ KE gain is 866 J $1 / 235\left(v^{2}-1.2^{2}\right)=866$ Speed is $7.14 \mathrm{~ms}^{-1}$	M1 A1ft M1 A1ft A1	[5]	For using WD by $\mathrm{P}=\mathrm{WD}$ against resistance +KE gain ft incorrect ans (i) For using KE gain $=1 / 2 m\left(v^{2}-u^{2}\right)$ ft incorrect KE SR (max 2/3 for the last three marks) for using Newton's second law and constant acceleration formula $50 \cos 30^{\circ}-25 \cos 30^{\circ}=35 \mathrm{a}$ and $\mathrm{v}^{2}=1.2^{2}+2 \times 40 \mathrm{a} \quad$ M1 \rightarrow speed is $7.14 \mathrm{~ms}^{-1}$ A1
4	(i) $0.36 \mathrm{~g} \sin 60^{\circ}-\mathrm{T}=0.36 \times 0.25$ Tension is 3.03 N	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		AG
	(ii) $\begin{aligned} & \mathrm{T} \pm \mathrm{F}-0.24 \mathrm{~g} \sin 60^{\circ}=0.24 \times 0.25 \\ & \mathrm{~F}=3.03-0.24 \mathrm{~g} \sin 60^{\circ}-0.24 \times 0.25 \\ & \mathrm{R}=0.24 \mathrm{~g} \cos 60^{\circ} \quad(\mathrm{F}=0.889) \end{aligned}$ Coefficient is 0.74	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		For applying Newton's second law to B. For using $\mu=F / R$
5	(i) $\begin{aligned} & {[\mathrm{s}=}1 / 2(1.4+1.1) \times 1.2 ; 1.1=1.4+(-\mathrm{d}) \times 1.2] \\ & \mathrm{AB}=1.5 \mathrm{~m} \text { or } \mathrm{d}=0.25 \\ & \mathrm{~d}=0.25 \text { or } \mathrm{AB}=1.5 \mathrm{~m} \end{aligned}$	M1 A1 B1ft		For using $s=1 / 2(u+v)$ to find $A B$ or $v=u+$ at to find d

Page 5 Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2010	9709	43

(ii) $\left[0=u^{2}+2(-0.25) 2\right.$;

M1

$$
\left.2=0-1 / 2(-0.25) \mathrm{t}^{2}\right]
$$

Speed is $1 \mathrm{~ms}^{-1}$ or time is 4 s
Time is 4 s or speed is $1 \mathrm{~ms}^{-1}$
B1ft

For using $0=u^{2}+2(-d) s$ to find u or $s=0-1 / 2(-d) t^{2}$ to find t
(iii) For line joining $(0,1.4)$ and $(1.2,1.1)$

For line joining $(1.2,-1)$ and $(5.2,0)$

B1
B1ft
ft wrong answer(s) in (ii)
[2]

SR (max 1/2)
For two correct lines and values missing B1ft

For using $v=0+$ at
For using $\mathrm{a}=\mathrm{g} \sin \alpha$ or for using $1 / 2 \mathrm{mv}^{2}=\mathrm{mgh}, \mathrm{s}=1 / 2 \mathrm{vt}$ and $\sin \alpha=h / s$
(ii) $\left[\mathrm{s}_{\mathrm{P}}=1 / 2 \mathrm{a} 2^{2}+\left\{(\mathrm{a} 2) \mathrm{t}+1 / 2 \mathrm{at}^{2}\right\}\right]$
or $\left[s_{P}=1 / 2 \mathrm{a}(\mathrm{t}+2)^{2}\right]$
$\left[s_{P}-s_{Q}=1 / 2 a 2^{2}+(a 2) t+1 / 2 a t^{2}-1 / 2 \mathrm{at}^{2}\right]$
$2 \times 1.75+2 \times 1.75 \mathrm{t}$
$[4.9=2 \mathrm{a}+2 \mathrm{at}]$
$\mathrm{t}=0.4$

For constructing an expression in t for s_{p}

For constructing an expression in t for $\mathrm{S}_{\mathrm{P}}-\mathrm{S}_{\mathrm{Q}}$
Correct expression for $\mathrm{S}_{\mathrm{P}}-\mathrm{s}_{\mathrm{Q}}$
For using $\mathrm{s}_{\mathrm{P}}-\mathrm{s}_{\mathrm{Q}}=4.9$ to construct an equation in t

For using limiting equilibrium of boxes
$\rightarrow \mathrm{P}=\mu \mathrm{R}$
[3]
For resolving forces horizontally on A when A is about to slide
AG

[3]

For applying Newton's second law to A and B combined or to B

