Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9709	42

1	DF = 35000/16	B1		
		M1		For using Newton's second law
	$DF - 1150g \sin 1.2^{\circ} - 975 = 1150a$	A1		
	Acceleration is 0.845 ms ⁻²	A1	F.43	
			[4]	
2	(i) Acceleration is $0.09 \mathrm{ms}^{-2}$	B1	[1]	
	(2) FD 1/(0+4)0.10	N / 1	[1]	F
	(ii) $[D = \frac{1}{2}(8+4)0.18 \text{ or}$ $D = (0 + \frac{1}{2}0.09 \times 2^2) + (0.18 \times 4 + \frac{1}{2}0 \times 4^2)$ $+ (0.18 \times 2 - \frac{1}{2}0.09 \times 2^2)]$	M1		For using the idea that area represents distance or for repeated use of $s = ut + \frac{1}{2} at^2$
	Distance is 1.08 m	A1		
			[2]	
	(iii) $[\frac{1}{2} \text{ 3V} = 1.08]$	M1		For using area of triangle = area of trapezium
	Greatest speed is 0.72 ms ⁻¹	A1		
			[2]	
				SR (max 1 out of 2) for candidates who assume (implicitly) that speed is greatest at a specific time $(t = 11 \text{ or } t = 9.5) 0.72 \text{ ms}^{-1} \text{ B1}$ from $\frac{1}{2}(0 + \text{V}) \times 3 = 1.08 \text{ or}$ from $\frac{1}{2}(0 + \text{V}) \times 1.5 = \frac{1}{2}1.08$
3	(i) $[R + 7\sin 45^\circ = 0.8g]$	M1		For resolving forces vertically (needs 3 terms)
	Normal component is 3.05 N	A1		AG
			[2]	
	(ii) $F = 7\cos 45^{\circ}$	B1		
		M1		For using $\mu = F/3.05$
	Coefficient is 1.62	A1		
			[3]	
4		M1		For resolving forces in the <i>x</i> -direction or in the <i>y</i> -direction
	$X = 160 + 250\cos\alpha$	A1		
	$Y = 370 - 250\sin\alpha$	A1		
		M1		For using $R^2 = X^2 + Y^2$
	Magnitude is 500 N	A1ft		ft 264N for consistent sin/cos mix
		M1		For using $\tan \theta = Y/X$
	Required angle is 36.9° (or 0.644 rads)	A1ft	[7]	ft 29.5° for consistent sin/cos mix

Page 5	Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9709	42

Alte	rnativ	e for 4	M1		For finding the resultant in magnitude and direction of two forces and obtaining a triangle enabling the calculation of the resultant of the three forces
	Tria	angle has sides 403, 250 and R	A1		or equivalent for different choice of two forces*
	Tria	angle has angle opposite R equal to 97.1°	A1		As *
	$[R^2]$	$= 403^2 + 250^2 - 2 \times 403 \times 250\cos 97.1^{\circ}$	M1		For using cosine rule to find R
	Mag	gnitude is 500 N	A1		
	[sin	$(66.6^{\circ} - z) \div 250 = \sin 97.1^{\circ} \div R]$	M1		For using sine rule to find z
	Req	uired angle is 36.9°	A1		
5	(i)		M1		For using KE loss = PE gain or $0^2 = u^2 - 2(g \sin \alpha)(0.45/\sin \alpha)$
		$\frac{1}{2}$ (m) u^2 = (m)g(0.45)	A1		
		Speed is 3 ms ⁻¹	A1	[2]	
	(ii)	[PE gain = $\frac{1}{2} 0.3 \times 3^2 - 0.39$]	M1	[3]	For using PE gain = KE lost – WD
	(11)	PE gain is 0.96 J	Alft		ft incorrect u
		[0.3gh = 0.96]	DM1		For using PE = mgh; dependent on the given WD being reflected in the value for PE used
		R is 0.32 m higher than the level of P	A1	[4]	TE useu
6	(i)		M1		For applying Newton's second law to A or to B or using $(M + m)a = Mg - F$
		0.45a = 0.45g - T and $0.2a = T - F$ or $(0.45 + 0.2)a = 0.45g - F$	A1		
		$F = 0.3 \times 0.2g$	B1		
			M1		For substituting for F and solving for a
		Acceleration is 6 ms ⁻²	A1		
		$[v^2 = 2 \times 6 \times [2 - (2.8 - 2.1)]$	M1		For using $v^2 = (0^2) + 2as$ (s must be less than 2)
		Speed is 3.95 ms ⁻¹	A1	(5)	AG
	(ii)	$0.2a_2 = -0.06g$	B1ft	[7]	ft incorrect F
	(11)	0.2 <i>a</i> ₂ 0.00g	М1		For using $v^2 = 3.95^2 +$
			1411		$2a_2[2.1 - \text{distance moved by B}]$
		$v^2 = 15.6 + 2(-3)(0.8)$	A1		
		Speed is 3.29 ms ⁻¹	A1		
		2 (40)		[4]	
Alte		e for 6(ii)	D.1		
	WD	against friction = $0.06g \times [2.1 - (2 - 0.7)]$	B1		E VEL WE
	1/ 0	$.2 \times 3.95^2 - \frac{1}{2} 0.2 \text{ v}^2 = 0.48$	M1		For using KE loss = WD against friction
			A1		
	spe	ed is 3.29 ms ⁻¹	A1		

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9709	42

7	(i)		M1		For integrating v_1 to find s_1
		$\int_{0}^{15} v_1 dt = 225$	A1		
		•0	AI		
		$A[(15^2/2 - 0.05 \times 15^3/3) - (0 - 0)] = 225$			
		A = 4	A1		
		$[4(15 - 0.05 \times 15^2) = B/15^2]$	M1		For using $v_1(15) = v_2(15)$
		B = 3375	A 1		AG
				[5]	
	(ii)	$s_2(t) = Bt^{-1}/(-1) (+ C)$	B1		
		[-3375/15 + C = 225]	M1		For using $s_2(15) = 225$ to find C
		Distance travelled is $[450 - 3375/t]$ m (for $t \ge 15$)	A1		
		(101 1 2 13)		[3]	
	(iii)	[450 - 3375/t = 315]	M1		For attempting to solve $s_2(t) = 315$
		$[v = 3375/25^2]$	M1		For substituting into $v = 3375/t^2$
		Speed is 5.4 ms ⁻¹	A1		
				[3]	
Alter	Alternative for 7(ii)				
	$_{S} =$	$\int_{15}^{t} 3375t^{-2} dt = -3375(\frac{1}{t} - \frac{1}{15})$	B1		
	= 22	25 - 3375/t			
	Dis	tance travelled = $225 + (225 - 3375/t)$	M1		
		tance travelled is $[450 - 3375/t]$ m $t \ge 15$)	A1		