9709 s10 ms_41

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	$\mathbf{9 7 0 9}$	$\mathbf{4 1}$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	41

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	41

$7 \quad$ (i)

$$
\int_{0}^{15} \mathrm{v}_{1} \mathrm{dt}=225 \rightarrow
$$

$$
A\left[\left(15^{2} / 2-0.05 \times 15^{3} / 3\right)-(0-0)\right]=225
$$

$$
A=4
$$

$$
\left[4\left(15-0.05 \times 15^{2}\right)=\mathrm{B} / 15^{2}\right]
$$

$$
B=3375
$$

M1
For integrating v_{1} to find s_{1}

A1

A1

A1
For using $\mathrm{v}_{1}(15)=\mathrm{v}_{2}(15)$
AG
[5]
B1
M1
A1

[3]

M1 \quad For attempting to solve $\mathrm{s}_{2}(\mathrm{t})=315$
For substituting into $\mathrm{v}=3375 / \mathrm{t}^{2}$

Alternative for 7(ii)

$$
\mathrm{s}=\int_{15}^{t} 3375 t^{-2} \mathrm{dt}=-3375\left(\frac{1}{\mathrm{t}}-\frac{1}{15}\right)
$$

$=225-3375 / \mathrm{t}$
Distance travelled $=225+(225-3375 / \mathrm{t})$ M1

Distance travelled is $[450-3375 / \mathrm{t}] \mathrm{m}$ A1 (for $t \geqslant 15$)

