	e 4	Mark Scheme: Teachers' version	9709_s Syllabus	Paper	_	
		GCE AS/A LEVEL – May/June 2010	9709	33		
EITHE	ER: State o	r imply non-modular inequality $(x-3)^2 > (2(x+1))^2$, or co	orresponding quadratic	2		
DITTL	equation, or pair of linear equations $(x - 3) = \pm 2(x + 1)$					
		reasonable solution attempt at a 3-term quadratic, or solve	two linear equations	M1		
	Obtain	critical values -5 and $\frac{1}{3}$	_	A1		
	State a	nswer $-5 < x < \frac{1}{3}$		A1		
OR:		the critical value $x = -5$ from a graphical method, or by i	nspection			
0111		olving a linear equation or inequality	nopeetion,	B1		
		the critical value $x = \frac{1}{3}$ similarly		B2		
		nswer $-5 < x < \frac{1}{3}$		B1	[4	
		t condone \leq for $<$; accept 0.33 for $\frac{1}{3}$.]		21	L	
(i) St	tate or imp	bly $3 \ln y = \ln A + 2x$ at any stage		B1		
St	tate gradie	ent is $\frac{2}{3}$, or equivalent		B1	[2	
		5				
		x = 0, ln $y = 0.5$ and solve for A		M1	E.	
0	btain $A =$	4.48		A1	[2	
Attem	pt to use ta	$an(A \pm B)$ formula and obtain an equation in tan x		M1		
		uadratic 2 $\tan^2 x + 3 \tan x - 1 = 0$, or equivalent		A1		
		uadratic and find a numerical value of x		M1		
	answer 1			A1		
		19.3° and no others in the given interval		A1	[
lgnore	e answers	outside the given interval. Treat answers in radians, 0.274	1 and 2.08, as a misrea	ad.]		
Separa	te variabl	es correctly		B1		
-		$(4-x^2)$, or terms $k_1 \ln(2-x) + k_2 \ln(2+x)$		B1		
Obtain	term –2 1	$n(4-x^2)$, or $-2 \ln(2-x) - 2 \ln(2+x)$, or equivalent		B1		
Obtain	term t , or	equivalent		B1		
		and or use limits $x = 1$, $t = 0$ in a solution containing terms	$a \ln(4-x^2)$ and bt	MI		
Obtain	$\cos c \ln(2 - c)$	(x), $d \ln(2 + x)$ and bt bolution in any form, e.g. $-2 \ln(4 - x^2) = t - 2 \ln 3$		M1 A1		
		btain $x^2 = 4 - 3\exp(-\frac{1}{2}t)$, or equivalent (allow use of 2 li	n = 2 = 2 = 2 = 20	A1	Ľ	
Kealla	inge and 0	$x^2 = 4 - 5 \exp(-\frac{1}{2}i)$, or equivalent (anow use of 2 if	11 5 - 2.20)	AI	[
	tate deriva	tive $-e^{-x} - (-2)e^{-2x}$, or equivalent	R	1 + B1		
(i) St		vative to zero and solve for x		M1		
	auate deri				[-	
Ec	-	In 2, or exact equivalent		A1	Ľ	
Ec O	btain $p = 1$	-	BI		Ľ	
Ed O (ii) St	btain $p = 1$ tate indefi	In 2, or exact equivalent nite integral $-e^{-x} - (-\frac{1}{2})e^{-2x}$, or equivalent imits $x = 0$ and $x = p$ correctly	BI	Al l + B1 M1	Ľ	

•	age 5	Mark Scheme: Teachers' version Syllabus	9 s10 m Paper	
	age J	GCE AS/A LEVEL – May/June 2010 9709	33	
(i)	Use corre	ct quotient or product rule	M1	
	Obtain co	rrect derivative in any form, e.g. $\frac{1}{x(x+1)} - \frac{\ln x}{(x+1)^2}$	A1	
		$x(x+1) (x+1)^2$		
	Equate de	rivative to zero and obtain the given equation correctly	A1	
	Consider	the sign of $x - \frac{(x+1)}{\ln x}$ at $x = 3$ and $x = 4$, or equivalent	M1	
	Complete	the argument with correct calculated values	A1	[5]
(ii)) Use the ite	erative formula correctly at least once, using or reaching a value in the interval	(3, 4) M1	
		nal answer 3.59	A1	
		ficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p.,		
	or show the	here is a sign change in the interval (3.585, 3.595)	A1	[3
(i)	Use corre	ct $cos(A + B)$ formula to express $cos 3\theta$ in terms of trig functions of 2θ and θ	<i>θ</i> M1	
		ct trig formulae and Pythagoras to express $\cos 3\theta$ in terms of $\cos\theta$	M1	
		correct expression in terms of $\cos\theta$ in any form	A1	
		e given identity correctly	A1	[4
	-	M1 for using correct formulae to express RHS in terms of $\cos \theta$ and $\cos 2\theta$		
		1 for expressing in terms of either only $\cos 3\theta$ and $\cos \theta$, or only $\cos 2\theta$, sin	2θ ,	
	$\cos\theta$, and	$1 \sin \theta$, and A1 for obtaining the given identity correctly.]		
(***	N TT : 1		D1 + D1	
(11)) Use identi	ity and integrate, obtaining terms $\frac{1}{4}(\frac{1}{3}\sin 3\theta)$ and $\frac{1}{4}(3\sin \theta)$, or equivalent	BI + BI	
	Use limits	s correctly in an integral of the form $k \sin 3\theta + l \sin \theta$	M1	
	Obtain an	swer $\frac{2}{3} - \frac{3}{8}\sqrt{3}$, or any exact equivalent	A1	[4
	o o unin un	3 8		Γ.
(a)	EITHER:	Substitute $1+i\sqrt{3}$, attempt complete expansions of the x^3 and x^2 terms	M1	
		Use $i^2 = -1$ correctly at least once	B1	
		Complete the verification correctly	Al	
		State that the other root is $1-i\sqrt{3}$	B1	
	<i>OR</i> 1:	State that the other root is $1-i\sqrt{3}$	B1	
	0.11.	State quadratic factor $x^2 - 2x + 4$		
			B1	
		Divide cubic by 3-term quadratic reaching partial quotient $2x + k$ Complete the division obtaining zero remainder	M1 A1	
	0.02	State factorisation $(2x + 3)(x^2 - 2x + 4)$, or equivalent		
	<i>OR</i> 2:		B1	
		Make reasonable solution attempt at a 3-term quadratic and use $i^2 = -1$	M1	
		Obtain the root $1 + i\sqrt{3}$	A1	
		State that the other root is $1-i\sqrt{3}$	B1	[4
(b)) Show poin	nt representing $1 + i\sqrt{3}$ in relatively correct position on an Argand diagram	B1	
(b)	-			
(b)	Show circ	the with centre at $1 + i\sqrt{3}$ and radius 1	B1	
(b)	Show circ Show line	The with centre at $1 + i\sqrt{3}$ and radius 1 is for $\arg z = \frac{1}{3}\pi$ making $\frac{1}{3}\pi$ with the real axis	B1√ B1	
(b)	Show circ Show line Show line	the with centre at $1 + i\sqrt{3}$ and radius 1	B1√ B1	

			Mark Sahama, Tasahara' yarajan Sullahus	Danar	_
	ra	ge 6	Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – May/June 20109709	Paper 33	
			GCE AS/A ELVEL - May/Suite 2010 9703		
) (i)	(i)	State or in	mply partial fractions of the form $\frac{A}{1-2x} + \frac{B}{2+x} + \frac{C}{(2+x)^2}$	B1	
		•	elevant method to determine a constant	M1	
			the of the values $A = 1, B = 1, C = -2$	A1	
			second value	A1	[5]
			e third value $A = Dr + F$	A1	[5]
			$\frac{A}{1-2x} + \frac{Dx+E}{(2+x)^2}$, where $A = 1, D = 1, E = 0$, is acceptable		
		scoring B	1M1A1A1A1 as above.]		
(ii)	(ii)	Use corre	ct method to obtain the first two terms of the expansion of $(1-2x)^{-1}$, $(2+x)^{-1}$,		
		$(2+x)^{-2}$,	$(1+\frac{1}{2}x)^{-1}$, or $(1+\frac{1}{2}x)^{-2}$	M1	
		Obtain con	rrect unsimplified expansions up to the term in x^2 of each partial fraction A1 $\sqrt{+}$ A1	$\sqrt{+A1}\sqrt{-A1}$	
		Obtain an	swer $1 + \frac{9}{4}x + \frac{15}{4}x^2$, or equivalent	A1	[5]
		[Symbolic	c binomial coefficients, e.g. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, are not sufficient for the M1. The f.t. is on A,	B, C.]	
			A, D, E form of partial fractions, give M1A1 $\sqrt{A1}\sqrt{A1}$ for the expansions then, if L ng out fully and A1 for the final answer.]	$0 \neq 0, M^{\dagger}$	l for
		M1 for m [SR: If <i>B</i>	se of an attempt to expand $(4+5x-x^2)(1-2x)^{-1}(2+x)^{-2}$, give M1A1A1 for the ultiplying out fully, and A1 for the final answer.] or <i>C</i> omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{A1}$	in (ii) .]	ons,
			or <i>E</i> omitted from the form of fractions, give B0M1A0A0A0 in (i); M1A1 $\sqrt{A1}$	1n (ii) .]	
0	(i)				
0	(i)	Express g	The point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ	(ii).] B1 M1	
0	(i)	Express g Substitute	eneral point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$	B1	[3]
0		Express g Substitute Obtain po State or ir	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ solution vector 4 i + 3 j , or equivalent mply a correct vector normal to the plane, e.g. 3 i - j + 2 k	B1 M1 A1 B1	[3]
0		Express g Substitute Obtain po State or ir Using the	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ in plane equation and solve for λ position vector 4 i + 3 j , or equivalent	B1 M1 A1 B1 Tor <i>p</i> M1	[3]
0		Express g Substitute Obtain po State or ir Using the Using the	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ position vector 4 i + 3 j , or equivalent mply a correct vector normal to the plane, e.g. 3 i – j + 2 k correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f	B1 M1 A1 B1 Tor <i>p</i> M1	[3]
0		Express g Substitute Obtain po State or in Using the Using the and evalu	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ osition vector 4 i + 3 j , or equivalent mply a correct vector normal to the plane, e.g. 3 i – j + 2 k correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m	B1 M1 A1 B1 r p M1 oduli	[3]
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ position vector $4\mathbf{i} + 3\mathbf{j}$, or equivalent mply a correct vector normal to the plane, e.g. $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians)	B1 M1 A1 B1 For <i>p</i> M1 noduli M1 A1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ position vector 4 i + 3 j , or equivalent mply a correct vector normal to the plane, e.g. 3 i – j + 2 k correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result	B1 M1 A1 For p M1 noduli M1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ position vector 4 i + 3 j , or equivalent mply a correct vector normal to the plane, e.g. 3 i - j + 2 k correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$	B1 M1 A1 Sor <i>p</i> M1 noduli M1 A1 B1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ position vector 4 i + 3 j , or equivalent mply a correct vector normal to the plane, e.g. 3 i – j + 2 k correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate d	B1 M1 A1 Sor <i>p</i> M1 noduli M1 A1 B1 M1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an <i>EITHER</i> :	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ osition vector 4 i + 3 j , or equivalent mply a correct vector normal to the plane, e.g. 3 i - j + 2 k correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent	B1 M1 A1 For <i>p</i> M1 noduli M1 A1 B1 M1 A1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ in plane equation and solve for λ osition vector 4 i + 3 j , or equivalent mply a correct vector normal to the plane, e.g. 3 i - j + 2 k correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors,	B1 M1 A1 B1 for p M1 hoduli M1 A1 B1 M1 A1 M1 A1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an <i>EITHER</i> :	The provided the second product of the second product product product product of the second product	B1 M1 A1 B1 or p M1 oduli M1 A1 B1 M1 A1 M1 A1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an <i>EITHER</i> :	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ solution vector $4\mathbf{i} + 3\mathbf{j}$, or equivalent mply a correct vector normal to the plane, e.g. $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Obtain two correct components of the product	B1 M1 A1 B1 for <i>p</i> M1 noduli M1 A1 B1 M1 A1 M1 A1 M1 A1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an <i>EITHER</i> :	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ osition vector $4\mathbf{i} + 3\mathbf{j}$, or equivalent mply a correct vector normal to the plane, e.g. $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Obtain two correct components of the product Obtain correct product, e.g. $6\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$	B1 M1 A1 B1 for <i>p</i> M1 noduli M1 A1 M1 A1 M1 A1 M1 A1 A1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an <i>EITHER</i> :	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ e in plane equation and solve for λ osition vector $4\mathbf{i} + 3\mathbf{j}$, or equivalent mply a correct vector normal to the plane, e.g. $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Obtain two correct components of the product Obtain correct product, e.g. $6\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i>	B1 M1 A1 B1 For <i>p</i> M1 noduli M1 A1 B1 M1 A1 M1 A1 M1 A1 M1 A1 M1	
0	(ii)	Express g Substitute Obtain po State or in Using the Using the and evalu Obtain an <i>EITHER</i> : <i>OR</i> 1:	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ in plane equation and solve for λ solution vector $4\mathbf{i} + 3\mathbf{j}$, or equivalent mply a correct vector normal to the plane, e.g. $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Obtain two correct components of the product Obtain correct product, e.g. $6\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent	B1 M1 A1 B1 for <i>p</i> M1 noduli M1 A1 M1 A1 M1 A1 M1 A1 A1	
0	(ii)	Express g Substitute Obtain po State or ir Using the Using the and evalu Obtain an <i>EITHER</i> :	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ in plane equation and solve for λ solution vector $4\mathbf{i} + 3\mathbf{j}$, or equivalent mply a correct vector normal to the plane, e.g. $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Obtain two correct components of the product Obtain correct product, e.g. $6\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain naswer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain more correct product, e.g. $6\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to form 2-parameter equation with relevant vectors	B1 M1 A1 B1 M1 M1 A1 B1 M1 A1 M1 A1 M1 A1 M1 A1	
0	(ii)	Express g Substitute Obtain po State or in Using the Using the and evalu Obtain an <i>EITHER</i> : <i>OR</i> 1:	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ in plane equation and solve for λ solution vector $4\mathbf{i} + 3\mathbf{j}$, or equivalent mply a correct vector normal to the plane, e.g. $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Obtain two correct components of the product Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Obtain two correct components of the product Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to form 2-parameter equation with relevant vectors State a correct equation, e.g. $\mathbf{r} = 2\mathbf{i} - \mathbf{j} - 4\mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) + \mu(3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$	B1 M1 A1 B1 for <i>p</i> M1 noduli M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1	
0	(ii)	Express g Substitute Obtain po State or in Using the Using the and evalu Obtain an <i>EITHER</i> : <i>OR</i> 1:	general point of the line in component form, e.g. $(2 + \lambda, -1 + 2\lambda, -4 + 2\lambda)$ in plane equation and solve for λ solution vector $4\mathbf{i} + 3\mathbf{j}$, or equivalent mply a correct vector normal to the plane, e.g. $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ correct process, evaluate the scalar product of a direction vector for <i>l</i> and a normal f correct process for the moduli, divide the scalar product by the product of the m ate the inverse cosine or inverse sine of the result swer 26.5° (or 0.462 radians) State $a + 2b + 2c = 0$ or $3a - b + 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 6 : 4 : -7$, or equivalent Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) \times (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Obtain two correct components of the product Obtain correct product, e.g. $6\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain naswer $6x + 4y - 7z = 36$, or equivalent Attempt to calculate of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain more correct product, e.g. $6\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}$ Substitute coordinates of a relevant point in $6x + 4y - 7z = d$ and evaluate <i>d</i> Obtain answer $6x + 4y - 7z = 36$, or equivalent Attempt to form 2-parameter equation with relevant vectors	B1 M1 A1 B1 for p M1 noduli M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1 A1	