Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	32

1 EITHER: Attempt to solve for 2^{x}
Obtain $2^{x}=6 / 4$, or equivalent A1
Use correct method for solving an equation of the form $2^{x}=a$, where $a>0 \quad$ M1
Obtain answer $x=0.585$
OR: \quad State an appropriate iterative formula, e.g. $x_{n+1}=\ln \left(\left(2^{x_{n}}+6\right) / 5\right) / \ln 2 \quad$ B1
Use the iterative formula correctly at least once M1
Obtain answer $x=0.585$
Show that the equation has no other root but 0.585
A1
[For the solution 0.585 with no relevant working, award B1 and a further B1 if 0.585 is shown to be the only root.]

2 Integrate by parts and reach $\pm x^{2} \cos x \pm \int 2 x \cos x \mathrm{~d} x$
Obtain $-x^{2} \cos x+\int 2 x \cos x \mathrm{~d} x$, or equivalent
Complete the integration, obtaining $-x^{2} \cos x+2 x \sin x+2 \cos x$, or equivalent A1
Substitute limits correctly, having integrated twice M1
Obtain the given answer correctly
(i) State or imply $\sin a=4 / 5$

Use $\sin (A-B)$ formula and substitute for $\cos a$ and $\sin a$ M1
Obtain answer $\frac{1}{10}(4 \sqrt{3}-3)$, or exact eqivalent
(ii) Use $\tan 2 A$ formula and substitute for $\tan a$, or use $\sin 2 A$ and $\cos 2 A$ formulae, substitute $\sin a$ and $\cos a$, and divide
Obtain $\tan 2 a=-\frac{24}{7}$, or equivalent
Use $\tan (A+B)$ formula with $A=2 a, B=a$ and substitute for $\tan 2 a$ and $\tan a \quad$ M1
Obtain $\tan 3 a=-\frac{44}{117}$

Obtain correct derivative in any form A1
Equate derivative to zero and solve for x M1
Obtain the given answer correctly A1
(ii) Use the iterative formula correctly at least once M1

Obtain final answer 4.49

Show sufficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show that there is a sign change in the interval $(4.485,4.495)$
(i) Substitute $x=-\frac{1}{2}$, equate to zero and obtain a correct equation, e.g.
$-\frac{1}{4}+\frac{5}{4}-\frac{1}{2} a+b=0$
Substitute $x=-2$ and equate to $9 \quad$ M1
Obtain a correct equation, e.g. $-16+20-2 a+b=9 \quad$ A1
Solve for a or for $b \quad$ M1
Obtain $a=-4$ and $b=-3$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	32

(ii) Attempt division by $2 x+1$ reaching a partial quotient of $x^{2}+k x$

Obtain quadratic factor $x^{2}+2 x-3$
Obtain factorisation $(2 x+1)(x+3)(x-1)$
[The M1 is earned if inspection has an unknown factor of $x^{2}+e x+f$ and an equation in e and/or f, or if two coefficients with the correct moduli are stated without working.]
[If linear factors are found by the factor theorem, give B1 + B1 for $(x-1)$ and $(x+3)$, and then B1 for the complete factorisation.]
(i) EITHER: State or imply $\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $\ln y$

State correct derivative of LHS, e.g. $\ln y+\frac{x}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Differentiate RHS and obtain an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Obtain given answer
OR 1: \quad State $\ln y=\frac{2 x+1}{x}$, or equivalent, and differentiate both sides
State correct derivative of LHS, e.g. $\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
State correct derivative of RHS, e.g. $-1 / x^{2}$
Rearrange and obtain given answer
OR 2: \quad State $y=\exp (2+1 / x)$, or equivalent, and attempt differentiation by chain rule
State correct derivative of RHS, e.g. $-\exp (2+1 / x) / x^{2} \quad B 1+$ B1
Obtain given answer A1
[The B marks are for the exponential term and its multiplier.]
(ii) State or imply $x=-\frac{1}{2}$ when $y=1 \quad$ B1

Substitute and obtain gradient of $-4 \quad$ B1 $\sqrt{ }$
Correctly form equation of tangent M1
Obtain final answer $y+4 x+1=0$, or equivalent
A1
(i) Separate variables correctly and attempt integration of both sides
$\begin{array}{ll}\text { Obtain term } \tan x & \text { B1 }\end{array}$
Obtain term $-\frac{1}{2} \mathrm{e}^{-2 t}$
B1
Evaluate a constant or use limits $x=0, t=0$ in a solution containing terms $a \tan x$ and $b \mathrm{e}^{-2 t}$
Obtain correct solution in any form, e.g. $\tan x=\frac{1}{2}-\frac{1}{2} \mathrm{e}^{-2 t} \quad$ A1
Rearrange as $x=\tan ^{-1}\left(\frac{1}{2}-\frac{1}{2} \mathrm{e}^{-2 t}\right)$, or equivalent
(ii) State that x approaches $\tan ^{-1}\left(\frac{1}{2}\right)$

B1
(iii) State that $1-\mathrm{e}^{-2 t}$ increases and so does the inverse tangent, or state that $\mathrm{e}^{-2 t} \cos ^{2} x$ is positive

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

8
(i) EITHER: State a correct expression for $|z|$ or $|z|^{2}$, e.g. $(1+\cos 2 \theta)^{2}+(\sin 2 \theta)^{2} \quad$ B1

Use double angle formulae throughout or Pythagoras M1
Obtain given answer $2 \cos \theta$ correctly A1
State a correct expression for tangent of argument, e.g. $(\sin 2 \theta /(1+\cos 2 \theta) \quad$ B1
Use double angle formulae to express it in terms of $\cos \theta$ and $\sin \theta \quad$ M1
Obtain $\tan \theta$ and state that the argument is θ A1
OR: \quad Use double angle formulae to express z in terms of $\cos \theta$ and $\sin \theta \quad$ M1
Obtain a correct expression, e.g. $1+\cos ^{2} \theta-\sin ^{2} \theta+2 \mathrm{i} \sin \theta \cos \theta \quad \mathrm{A} 1$
Convert the expression to polar form M1
Obtain $2 \cos \theta(\cos \theta+\mathrm{i} \sin \theta) \quad$ A1
State that the modulus is $2 \cos \theta \quad$ A1
State that the argument is θ A1
(ii) Substitute for z and multiply numerator and denominator by the conjugate of z, or equivalent M1
Obtain correct real denominator in any form A1
Identify and obtain real part equal to $\frac{1}{2}$
(i) State or imply a correct normal vector to either plane, e.g. $3 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k}$ or $a \mathbf{i}+\mathbf{j}+\mathbf{k}$

Equate scalar product of normals to zero and obtain an equation in a, e.g.
$3 a+2+4=0$
Obtain $a=-2$ A1
(ii) Express general point of the line in component form, e.g. $(\lambda, 1+2 \lambda,-1+2 \lambda)$

Either substitute components in the equation of p and solve for λ, or substitute components and the value of a in the equation of q and solve for λ
Obtain $\lambda=1$ for point A
Obtain $\lambda=2$ for point B
Carry out correct process for finding the length of $A B \quad$ M1(dep*)
Obtain answer $A B=3$
[The second M mark is dependent on both values of λ being found by correct methods.]
(i) EITHER: Divide by denominator and obtain quadratic remainder
OR: \quad Reduce RHS to a single fraction and equate numerators, or equivalent M1
Obtain $A=1$ A1
Use any relevant method to obtain B, C or D M1
Obtain one correct answer A1
Obtain $B=2, C=1$ and $D=-3$ A1[SR: If $A=1$ stated without working give B1.]
(ii) Integrate and obtain $x+2 \ln x-\frac{1}{x}-\frac{3}{2} \ln (2 x-1)$, or equivalent B3 $\sqrt{ }$
(The f.t. is on A, B, C, D. Give $\mathrm{B} 2 \sqrt{ }$ if only one error in integration; $\mathrm{B} 1 \sqrt{ }$ if two.)Substitute limits correctly in the complete integral
Obtain given answer correctly following full and exact working A1

