9709 s10 ms 31

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	31

1 EITHER: State or imply non-modular inequality $(x+3 a)^{2}>(2(x-2 a))^{2}$, or corresponding quadratic equation, or pair of linear equations $(x+3 a)= \pm 2(x-2 a)$
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations
Obtain critical values $x=\frac{1}{3} a$ and $x=7 a \quad$ A1
State answer $\frac{1}{3} a<x<7 a \quad$ A1
OR: $\quad \begin{aligned} & \text { Obtain the critical value } x=7 a \text { from a graphical method, or by inspection, or by } \\ & \text { solving a linear equation or inequality }\end{aligned}$
$\begin{array}{ll}\text { Obtain the critical value } x=\frac{1}{3} a \text { similarly } & \text { B2 }\end{array}$
State answer $\frac{1}{3} a<x<7 a$
B1
[Do not condone \leqslant for $<$; accept 0.33 for $\frac{1}{3}$.]

2 Use correct $\cos 2 A$ formula and obtain an equation in $\sin \theta$
Obtain $4 \sin ^{2} \theta+\sin \theta-3=0$, or equivalent
A1
Make reasonable attempt to solve a 3-term quadratic in $\sin \theta \quad$ M1
Obtain answer 48.6°
Obtain answer 131.4° and no others in the given range
Obtain answer 270° and no others in the given range
[Treat the giving of answers in radians as a misread. Ignore answers outside the given range.]

4

9709 s10 ms 31

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	31

5 Separate variables correctly
$\begin{array}{ll}\text { Integrate and obtain term } \ln x & \text { B1 }\end{array}$
Integrate and obtain term $\frac{1}{2} \ln \left(y^{2}+4\right)$ B1
Evaluate a constant or use limits $y=0, x=1$ in a solution containing $a \ln x$ and $b \ln \left(y^{2}+4\right) \quad$ M1
Obtain correct solution in any form, e.g. $\frac{1}{2} \ln \left(y^{2}+4\right)=\ln x+\frac{1}{2} \ln 4$ A1

Rearrange as $y^{2}=4\left(x^{2}-1\right)$, or equivalent

6
$\begin{array}{lr}\text { (i) Using the formulae } \frac{1}{2} r^{2} \theta \text { and } \frac{1}{2} r^{2} \sin \theta \text {, or equivalent, form an equation } & \text { M1 } \\ \text { Obtain a correct equation in } r \text { and } x \text { and or } x / 2 \text { in any form } & \text { A1 } \\ \text { Obtain the given equation correctly } & \text { A1 } \\ \text { (ii) Consider the sign of } x-\left(\frac{3}{4} \pi-\sin x\right) \text { at } x=1.3 \text { and } x=1.5 \text {, or equivalent } & \text { M1 }\end{array}$
Complete the argument with correct calculations
(iii) Use the iterative formula correctly at least once M1

Obtain final answer 1.38
Show sufficient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or show there is a sign change in the interval $(1.375,1.385)$
(i) Obtain modulus $\sqrt{8}$

Obtain argument $\frac{1}{4} \pi$ or 45°
(ii) Show 1, i and u in relatively correct positions on an Argand diagram B1

Show the perpendicular bisector of the line joining 1 and $i \quad$ B1
$\begin{array}{ll}\text { Show a circle with centre } u \text { and radius } 1 & \text { B1 }\end{array}$
Shade the correct region

(i) State or imply the form $\frac{A}{x+1}+\frac{B}{x+3}$ and use a relevant method to find A or B

Obtain $A=1, B=-1$
(ii) Square the result of part (i) and substitute the fractions of part (i)

Obtain the given answer correctly
(iii) Integrate and obtain $-\frac{1}{x+1}-\ln (x+1)+\ln (x+3)-\frac{1}{x+3}$

Substitute limits correctly in an integral containing at least two terms of the correct form
Obtain given answer following full and exact working

B1

B1 A1

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	31

(i) Use quotient or product rule to differentiate $(1-x) /(1+x)$ M1
Obtain correct derivative in any form A1
Use chain rule to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ M1
Obtain a correct expression in any form A1
Obtain the gradient of the normal in the given form correctly A1
(ii) Use product rule M1
Obtain correct derivative in any form A1
Equate derivative to zero and solve for x M1
Obtain $x=\frac{1}{2}$ A110 (i) Express general point of l or m in component form, e.g. $(1+s, 1-s, 1+2 s)$ or$(4+2 t, 6+2 t, 1+t)$B1
Equate at least two corresponding pairs of components and solve for s or t M1
Obtain $s=-1$ or $t=-2$ A1
Verify that all three component equations are satisfied A1
(ii) Carry out correct process for evaluating the scalar product of the direction vectors of l and m M1
Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result M1
Obtain answer 74.2° (or 1.30 radians) A1
(iii) EITHER: Use scalar product to obtain $a-b+2 c=0$ and $2 a+2 b+c=0$ B1
Solve and obtain one ratio, e.g. $a: b$ M1
Obtain $a: b: c=5:-3:-4$, or equivalent A1
Substitute coordinates of a relevant point and values for a, b and c in general equation of plane and evaluate d M1
Obtain answer $5 x-3 y-4 z=-2$, or equivalent A1
OR 1: Using two points on l and one on m, or vice versa, state three equations in a, b, c and d B1
Solve and obtain one ratio, e.g. $a: b$ M1
Obtain a ratio of three of the unknowns, e.g. $a: b: c=-5: 3: 4$ A1
Use coordinates of a relevant point and found ratio to find the fourth unknown, e.g. d M1
Obtain answer $-5 x+3 y+4 z=2$, or equivalent A1
OR 2: Form a correct 2-parameter equation for the plane, e.g. $\mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}+2 \mathbf{k})+\mu(2 \mathbf{i}+2 \mathbf{j}+\mathbf{k})$ B1
State three equations in x, y, z, λ and μ M1
State three correct equations A1
Eliminate λ and μ M1
Obtain answer $5 x-3 y-4 z=-2$, or equivalent A1
OR 3: \quad Attempt to calculate vector product of direction vectors of l and m M1
Obtain two correct components of the product A1
Obtain correct product, e.g. $-5 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$ A1
Form a plane equation and use coordinates of a relevant point to calculate d M1
Obtain answer $-5 x+3 y+4 z=2$, or equivalent A1

