Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	31
EITHER:	State or imply non-modular inequality $(x + 3a)^2 > (2(x - 2a)^2)$ quadratic equation, or pair of linear equations $(x + 3a) = \pm 2(a)^2$	(x-2a)	B1
	Make reasonable solution attempt at a 3-term quadratic equations Obtain critical values $x = \frac{1}{3}a$ and $x = 7a$, or solve two in	M1 A1
	State answer $\frac{1}{3}a < x < 7a$		A1
OR:	Obtain the critical value $x = 7a$ from a graphical method, or solving a linear equation or inequality Obtain the critical value $x = \frac{1}{3}a$ similarly	or by inspection, or	r by B1 B2
	State answer $\frac{1}{3}a < x < 7a$		B1
	[Do not condone \leq for \leq ; accept 0.33 for $\frac{1}{3}$.]		

2	Use correct $\cos 2A$ formula and obtain an equation in $\sin \theta$	M1	
	Obtain $4\sin^2\theta + \sin\theta - 3 = 0$, or equivalent	A1	
	Make reasonable attempt to solve a 3-term quadratic in sin θ	M1	
	Obtain answer 48.6°	A1	
	Obtain answer 131.4° and no others in the given range	A1 $$	
	Obtain answer 270° and no others in the given range	A1	[6]
	[Treat the giving of answers in radians as a misread. Ignore answers outside the given range.]		

3	(i)	EITHER:	State or imply $n \ln x + \ln y = \ln C$	B1	
			Substitute <i>x</i> - and <i>y</i> -values and solve for <i>n</i>	M1	
			Obtain $n = 1.50$	A1	
			Solve for <i>C</i>	M1	
			Obtain $C = 6.00$	A1	
		OR:	Obtain two correct equations by substituting x- and y-values in $x^n y = C$	B1	
			Solve for <i>n</i>	M1	
			Obtain $n = 1.50$	A1	
			Solve for <i>C</i>	M1	
			Obtain $C = 6.00$	A1	[5]

(ii) State that the graph of $\ln y$ against $\ln x$ has equation $n \ln x + \ln y = \ln C$ which is *linear* in $\ln y$ and $\ln x$, or has equation of the form $nX + Y = \ln C$, where $X = \ln x$ and $Y = \ln y$, and is thus a straight line B1

4

- (i) State correct expansion of cos(3x x) or cos(3x + x)B1Substitute expansions in $\frac{1}{2}(cos 2x cos 4x)$, or equivalentM1Simplify and obtain the given identity correctlyA1(ii) Obtain integral $\frac{1}{4}sin 2x \frac{1}{8}sin 4x$ B1Substitute limits correctly in an integral of the form asin 2x + bsin 4xM1
 - Substitute limits correctly in an integral of the form $a \sin 2x + b \sin 4x$ M1Obtain given answer following full, correct and exact workingA1[3]

[1]

	Page 5	ge 5 Mark Scheme: Teachers' version		Paper	<u>3</u> 3
		GCE AS/A LEVEL – May/Ju	ne 2010 9709	31	
	Separate	variables correctly		B1	
	-	and obtain term $\ln x$		B1	
	Integrate	and obtain term $\frac{1}{2}\ln(y^2 + 4)$		B1	
	Evaluate	a constant or use limits $y = 0$, $x = 1$ in a solution	on containing $a \ln x$ and $b \ln(y^2 + 4)$	M1	
	Obtain c	prrect solution in any form, e.g. $\frac{1}{2}\ln(y^2 + 4) =$	$\ln x + \frac{1}{2}\ln 4$	A1	
	Rearrang	e as $y^2 = 4(x^2 - 1)$, or equivalent		A1	[6
	(i)	Using the formulae $\frac{1}{2}r^2\theta$ and $\frac{1}{2}r^2\sin\theta$, or e	quivalent, form an equation	M1	
		Obtain a correct equation in r and x and/or $x/2$		A1	
		Obtain the given equation correctly	·	A1	[3
	(ii)	Consider the sign of $x - (\frac{3}{4}\pi - \sin x)$ at $x = 1.3$	and $x = 1.5$, or equivalent	M1	
		Complete the argument with correct calculation	ons	A1	[2
	(iii)	Use the iterative formula correctly at least one	e	M1	
	()	Obtain final answer 1.38		A1	
		Show sufficient iterations to at least 4 d.p. to there is a sign change in the interval (1.375, 1		ow A1	[3
	(i)	Obtain modulus $\sqrt{8}$		B1	
		Obtain argument $\frac{1}{4}\pi$ or 45°		B1	[2
	(ii)	Show 1, i and <i>u</i> in relatively correct positions	on an Argand diagram	B1	
		Show the perpendicular bisector of the line jo	ining 1 and i	B1	
		Show a circle with centre <i>u</i> and radius 1 Shade the correct radion		B1 B1	۲/
		Shade the correct region		DI	[4
	(iii)	State or imply relevance of the appropriate tar	•	B1 $$	
		Carry out complete strategy for finding $ z $ for	the critical point	M1	
		Obtain answer $\sqrt{7}$		A1	[:
	(i)	State or imply the form $\frac{A}{x+1} + \frac{B}{x+3}$ and use a	relevant method to find A or B	M1	
		x+1 x+3 Obtain $A = 1, B = -1$		A1	[2
			fractions of part (i)		L
	(ii)	Square the result of part (i) and substitute the Obtain the given answer correctly	fractions of part (1)	M1 A1	[2
	(iii)	Integrate and obtain $-\frac{1}{x+1} - \ln(x+1) + \ln(x+1)$	$(+3) - \frac{1}{x+3}$	B3	
		Substitute limits correctly in an integral cont form		ect M1	
		Obtain given answer following full and exact	1 .	Al	[4

Page 6				Syllabus	<u>s10 ms</u> Paper	_
	0		GCE AS/A LEVEL – May/June 2010	9709	31	
)	(i)	Use quoti	ent or product rule to differentiate $(1 - x)/(1 + x)$		M1	
	(1)		rrect derivative in any form		Al	
			rule to find $\frac{dy}{dy}$		M1	
		Use cham	$\frac{1}{dx}$		1 VI 1	
			correct expression in any form		A1	
		Obtain the	e gradient of the normal in the given form correctly		A1	[5]
	(ii)	Use produ	ict rule		M1	
		-	rrect derivative in any form		A1	
			rivative to zero and solve for x		M1	
		Obtain <i>x</i> =	$=\frac{1}{2}$		A1	[4]
0	(i)	Express o	general point of l or m in component form, e.g. $(1 + s,$	1 - s + 2s)r	
10	(1)		t = 2t, 1 + t	1 5, 1 25)	B1	
			least two corresponding pairs of components and solve fo	r s or t	M1	
			= -1 or t = -2		A1	
		Verify that	at all three component equations are satisfied		A1	[4]
	(ii)	Carry out	correct process for evaluating the scalar product of the di	irection vectors of	of	
	()	<i>l</i> and <i>m</i>	······································		M1	
		Using the	correct process for the moduli, divide the scalar product	by the product of	of	
			i and evaluate the inverse cosine of the result		M1	
		Obtain an	swer 74.2° (or 1.30 radians)		A1	[3]
	(iii)	EITHER:	Use scalar product to obtain $a - b + 2c = 0$ and $2a + 2b - 2c = 0$	+ c = 0	B1	
			Solve and obtain one ratio, e.g. <i>a</i> : <i>b</i>		M1	
			Obtain $a: b: c = 5: -3: -4$, or equivalent		A1	
			Substitute coordinates of a relevant point and values	for a, b and c		
			general equation of plane and evaluate d		M1	
		001	Obtain answer $5x - 3y - 4z = -2$, or equivalent	41	A1	
		<i>OR</i> 1:	Using two points on l and one on m , or vice versa, state a, b, c and d	three equations	n B1	
			<i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> Solve and obtain one ratio, e.g. <i>a</i> : <i>b</i>		M1	
			Obtain a ratio of three of the unknowns, e.g. $a:b:c = -$	$5 \cdot 3 \cdot 4$	A1	
			Use coordinates of a relevant point and found ratio t			
			unknown, e.g. d		M1	
			Obtain answer $-5x + 3y + 4z = 2$, or equivalent		A1	
		OR 2:	Form a correct 2-parameter equation for the plane,			
			e.g. $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - \mathbf{j} + 2\mathbf{k}) + \mu(2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$		B1	
			State three equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ		M1	
			State three correct equations		A1	
			Eliminate λ and μ		M1	
		<i>OR</i> 3:	Obtain answer $5x - 3y - 4z = -2$, or equivalent Attempt to calculate vector product of direction vectors	of land m	A1 M1	
		ON 3:	Attempt to calculate vector product of direction vectors Obtain two correct components of the product		A1	
			Obtain correct product, e.g. $-5\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$		Al Al	
			Form a plane equation and use coordinates of a :	relevant point 1		
			calculate d	. P	M1	