9709 s10 ms 22

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	22

1 State or imply $y \log 2.8=x \log 13 \quad$ B1
Rearrange into form $y=\frac{\log 13}{\log 2.8} x$ or equivalent B1

Obtain answer $k=2.49$
B1

2
(i) State or imply correct ordinates $0.27067 \ldots, 0.20521 \ldots, 0.14936 \ldots$

Obtain answer 0.21 with no errors seen A1
(ii) Justify statement that the trapezium rule gives an over-estimate

3 EITHER State or imply non-modular inequality $(2 x-1)^{2}<(x+4)^{2}$, or corresponding equation or pair of linear equations
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations M1 Obtain critical values -1 and 5 State correct answer $-1<x<5$
OR Obtain one critical value, e.g. $x=5$, by solving a linear equation (or inequality) or from a graphical method or by inspectionB1
Obtain the other critical value similarly B2
State correct answer $-1<x<5$ B1

4 (a) Obtain integral $a \sin 2 x$ with $a= \pm\left(1,2\right.$ or $\left.\frac{1}{2}\right)$
Use limits and obtain $\frac{1}{2}$ (AG)
(b) Use $\tan ^{2} x=\sec ^{2} x-1$ and attempt to integrate both terms M1
Obtain $3 \tan x-3 x$ A1
Attempt to substitute limits, using exact values M1
Obtain answer $2 \sqrt{3}-\frac{\pi}{2}$
(i) Use product rule M1

Obtain correct derivative in any form
Show that derivative is equal to zero when $x=3 \quad$ A1
$\begin{array}{lr}\text { (ii) Substitute } x=1 \text { into gradient function, obtaining } 2 \mathrm{e}^{-1} \text { or equivalent } & \text { M1 } \\ \text { State or imply required } y \text {-coordinate is } \mathrm{e}^{-1} & \text { B1 }\end{array}$
Form equation of line through ($1, \mathrm{e}^{-1}$) with gradient found (NOT the normal) M1
Obtain equation in any correct form

6 (i) Make a recognisable sketch of a relevant graph, e.g. $y=\ln x$ or $y=2-x^{2}$
B1
Sketch a second relevant graph and justify the given statement
B1
(ii) Consider sign of $\operatorname{In} x-\left(2-x^{2}\right)$ at $x=1.3$ and $x=1.4$, or equivalent M1
Complete the argument correctly with appropriate calculations A1

Br

