Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	$\mathbf{9 7 0 9}$	$\mathbf{2 1}$

1 EITHER: State or imply non-modular inequality $(2 x-3)^{2}>5^{2}$, or corresponding equation or pair of linear equationsM1
Obtain critical values -1 and 4 A1
State correct answer $x<-1, x>4$ A1
OR: \quad State one critical value, e.g. $x=4$, having solved a linear equation (or inequality) or from a graphical method or by inspection B1
State the other critical value correctly B1
State correct answer $x<-1, x>4$ B1
2 Obtain integral $\ln (x+2)$ B1
Substitute correct limits correctly M1
Use law for the logarithm of a product, a quotient or a power M1
Obtain given answer following full and correct working A1
3 (i) Use $\tan (A \pm B)$ formula to obtain an equation in $\tan x$ M1
Use $\tan 45^{\circ}=1$ and obtain a correct equation in any form A1
Obtain the given equation correctly A1
(ii) Solve the given quadratic in $\tan x$ and evaluate an inverse tangent M1
Obtain a correct answer, e.g. 18.4° A1
Obtain second answer, e.g. 26.6°, and no others in the given interval A1
[Treat the giving of answers in radians as a misread. Ignore answers outside the given interval.]
4 (i) Commence division by $x^{2}+x-1$ obtaining quotient of the form $x+k$ M1
Obtain quotient $x+2$ A1
Obtain remainder $3 x+4$ A1
Identify the quotient and remainder correctly A1V
(ii) Substitute $x=-1$ and evaluate expression M1
Obtain answer 0 A1
(i) State or imply $2^{-x}=\frac{1}{y}$, or $2^{-x}=y^{-1}$Substitute and obtain a 3 -term quadratic in yM1
Obtain the given answer correctly A1
(ii) Solve the given quadratic and carry out correct method for solving an equation of the form
$2^{x}=a$, where $a>0$ M1
Obtain answer $x=1.58$ or 1.585 A1
Obtain answer $x=0$B1
B1-[3]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	21

6 (i) State $2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $x^{2} y$ B1
State $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{2} B1
Equate derivatives of LHS and RHS, and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ M1
Obtain given answer A1
(ii) Substitute and obtain gradient $\frac{2}{5}$, or equivalent B1
Form equation of tangent at the given point $(1,2)$ M1
Obtain answer $2 x-5 y+8=0$, or equivalent A1[The M1 is dependent on at least one of the B marks being obtained.]
[4]
7 (i) Make a recognisable sketch of a relevant graph, e.g. $y=2-x$ B1
Sketch an appropriate second graph, e.g. $y=\mathrm{e}^{2 x}$, and justify the given statement B1
(ii) Consider sign of $\mathrm{e}^{2 x}-(2-x)$ at $x=0$ and $x=0.5$, or equivalent M1
Complete the argument correctly with correct calculations A1(iii) Show that $\mathrm{e}^{2 x}=2-x$ is equivalent to $x=\frac{1}{2} \ln (2-x)$, or vice versaB1
(iv) Use the iterative formula correctly at least once M1
Obtain final answer 0.27 A1 A1
Show sufficient iterations to justify its accuracy to 2 d.p., or show there is a sign changein the interval $(0.265,0.275)$A1

$$
\text { in the interval }(0.265,0.275)
$$

Obtain correct derivative in any form A1
Obtain given result correctlyA1
(ii) State $\cot ^{2} x \equiv-1+\operatorname{cosec}^{2} x$, or equivalent B1
Obtain integral $-x-\cot x$ (f.t. on signs in the identity) B1 $\sqrt{ }$
Substitute correct limits correctly M1
Obtain given answer A1
(iii) Use trig formulae to convert integrand to $\frac{1}{k \sin ^{2} x}$ where $k= \pm 2$, or ± 1 M1Obtain given answer $\frac{1}{2} \operatorname{cosec}^{2} x$ correctlyA1
Obtain answer $-\frac{1}{2} \cot x+c$, or equivalentB1

