				9709	<u></u>	<u> </u>
-	Pa	ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9709	21	
1	ЕП	THER: S	State or imply non-modular inequality $(2x-3)^2 > 5^2$, or correst	onding equation		
_		(or pair of linear equations		M1	
		(Obtain critical values –1 and 4		A1	
			State correct answer $x < -1, x > 4$		A1	
	OR		State one critical value $e \sigma x = 4$ having solved a linear equation	on (or inequality)		
	on	• •	or from a graphical method or by inspection	on (or mequanty)	B1	
		(State the other critical value correctly		B1	
			State correct answer $x < -1$, $x > 4$		B1	[3]
2	Obt	ain integ	gral $\ln(x+2)$		B1	
	Sub	stitute c	correct limits correctly		M1	
	Use	law for	the logarithm of a product, a quotient or a power		M1	
	Obt	ain give	en answer following full and correct working		A1	[4]
3	(i)	Use tar	$n(A \pm B)$ formula to obtain an equation in tan x		M1	
		Use tar	$145^\circ = 1$ and obtain a correct equation in any form		A1	
		Obtain	the given equation correctly		A1	[3]
	(ii)	Solve t	the given quadratic in $\tan x$ and evaluate an inverse tangent		M1	
		Obtain	a correct answer, e.g. 18.4°		A1	[0]
		Obtain [Treat]	second answer, e.g. 26.6°, and no others in the given interval the giving of answers in radians as a misread. Ignore answers o	utside the given in	AI terval.]	[3]
		[]	
4	(i)	Comm	ence division by $x^2 + x - 1$ obtaining quotient of the form $x + k$		M1	
		Obtain	quotient $x + 2$		A1	
		Obtain	remainder $3x + 4$		A1	
		Identif	y the quotient and remainder correctly		A1√	[4]
	(ii)	Substit	tute $x = -1$ and evaluate expression		M1	
		Obtain	answer 0		A1	[2]
5	(i)	State o	$r \text{ imply } 2^{-x} = \frac{1}{2}$ or $2^{-x} = v^{-1}$		B1	
5	(1)	State 0	$\frac{y}{y}$		DI	
		Substit	tute and obtain a 3-term quadratic in y		M1	[0]
		Obtain	the given answer correctly		Al	[3]
	(ii)	Solve t	the given quadratic and carry out correct method for solving an	equation of the for	rm	
		$2^{n} = a$,	where $a > 0$		M1	
		Obtain	answer $x = 1.58$ or 1.585		Al D1	[2]
		Obtain	answer $x = 0$		ВI	[ວ]

Decis C		~~ F	Mark Sahama, Tasahara' warajan	9709 Svilebue	<u>sio_m</u>	<u>s_</u> 2]
Page 5		ye o	Mark Scheme: Leachers' Version	Syliabus	Paper	
			GUE AS/A LEVEL - May/June 2010	9709	21	
6	(i)	State 2xy	$+x^2 \frac{dy}{dx}$ as derivative of x^2y		B1	
		State $2y = \frac{1}{2}$	$\frac{dy}{dx}$ as derivative of y^2		B1	
		Equate de	erivatives of LHS and RHS, and solve for $\frac{dy}{dx}$		M1	
		Obtain gi	ven answer		A1	[4]
	(ii)	Substitute	e and obtain gradient $\frac{2}{5}$, or equivalent		B1	
		Form equ Obtain an [The M1	ation of tangent at the given point $(1, 2)$ swer $2x - 5y + 8 = 0$, or equivalent is dependent on at least one of the B marks being obtained.]		M1 A1	[3]
7	(i)	Make a re Sketch an	ecognisable sketch of a relevant graph, e.g. $y = 2 - x$ appropriate second graph, e.g. $y = e^{2x}$, and justify the given	statement	B1 B1	[2]
	(ii)	Consider Complete	sign of $e^{2x} - (2 - x)$ at $x = 0$ and $x = 0.5$, or equivalent the argument correctly with correct calculations		M1 A1	[2]
	(iii)	Show that	t $e^{2x} = 2 - x$ is equivalent to $x = \frac{1}{2} \ln(2 - x)$, or vice versa		B1	[1]
	(iv)	Use the it Obtain fir Show suffing the interview.	erative formula correctly at least once hal answer 0.27 ficient iterations to justify its accuracy to 2 d.p., or show the erval (0.265, 0.275)	re is a sign change	M1 A1	[3]
8	(i)	Use quoti Obtain co Obtain gi	ent rule prrect derivative in any form ven result correctly		M1 A1 A1	[3]
	(ii)	State cot ² Obtain in Substitute Obtain gi	$x \equiv -1 + \cos ec^2 x$, or equivalent tegral $-x - \cot x$ (f.t. on signs in the identity) e correct limits correctly ven answer		B1 B1√ M1 A1	[4]
	(iii)	Use trig f	formulae to convert integrand to $\frac{1}{k \sin^2 x}$ where $k = \pm 2$, or $\pm $	1	M1	
		Obtain gi	ven answer $\frac{1}{2} \csc^2 x$ correctly		A1	
		Obtain an	swer $-\frac{1}{2}\cot x + c$, or equivalent		B1	[3]