Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	13

1 (i) $\begin{aligned} & a=12, a r=-6 \rightarrow r=-1 / 2 \\ & a r^{9}=\frac{-3}{128} \end{aligned}$ (ii) $S_{\infty}=\frac{a}{1-r}$ used $\rightarrow 8$	M1 M1 A1 [3] M1 A1 [2]	Attempt at r from "ar" $a r^{9}$ must be correct. co Correct formula used. M1 needs $\|r\|<1$
2 (i) $\left(x-\frac{2}{x}\right)^{6}=x^{6}-12 x^{4}+60 x^{2}$ (ii) $\times\left(1+x^{2}\right) \rightarrow 60-12=48$	B1 $\times 3$ [3] M1 A1V [2]	co Must be exactly 2 terms. $\sqrt{ }$ from his (i).
$3 \mathrm{f}: x \mapsto a+b \cos x$ (i) $\begin{aligned} & \mathrm{f}(0)=10, a+b=10 \\ & \mathrm{f}(2 / 3 \pi)=1, a-\frac{b}{2}=1 \\ & \rightarrow a=4, b=6 \end{aligned}$ (ii) Range is -2 to 10 . $\text { (iii) } \begin{aligned} & \cos \left(\frac{5}{6} \pi\right)=-\cos \left(\frac{1}{6} \pi\right)=-\frac{\sqrt{3}}{2} \\ & \rightarrow 4-3 \sqrt{3} \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ & {[2]} \\ \text { B1 } & \\ & {[1]} \\ \text { B1 } & \\ & \\ \text { B1 } & \\ & \\ & {[2]} \end{array}$	EITHER OF THESE both co \checkmark for his " $a-b$ " to " $a+b$ " For $\cos 30^{\circ}=1 / 2 \sqrt{3}$ used somewhere. co
4 (i) $2 \sin x \tan x+3=0$ $2 \sin x \frac{\sin x}{\cos x}+3=0$ $2 \frac{\left(1-\cos ^{2} x\right)}{\cos x}+3=0$ $\rightarrow 2 \cos ^{2} x-3 \cos x-2=0$ (ii) $\begin{aligned} & 2 \cos ^{2} x-3 \cos x-2=0 \\ & \rightarrow \cos x=-1 / 2 \text { or } 2 \\ & x=120^{\circ} \text { or } 240^{\circ} \end{aligned}$		For using $\tan =\sin \div \cos$ For using $\sin ^{2}+\cos ^{2}=1$ and everything correct Answer given - check. Solution of quadratic. co. $\sqrt{ }$ for 360 - his answer.

9709 s10 ms 13

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	13

$5 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{6}{\sqrt{3 x-2}}$ (i) $x=2$, tangent has gradient 3 \rightarrow normal has gradient $-\frac{1}{3}$ $\rightarrow y-11=-\frac{1}{3}(x-2)$ (ii) Integrate $\rightarrow 6 \frac{\sqrt{3 x-2}}{\frac{1}{2}} \div 3$ $\begin{aligned} & \rightarrow y=4 \sqrt{3 x-2}+c \text { through }(2,11) \\ & \rightarrow y=4 \sqrt{3 x-2}+3 \end{aligned}$	B1 B1 M1 A1 [4]	Use of $m_{1} m_{2}=-1$ with $\mathrm{d} y / \mathrm{d} x$ Correct form of line eqn. for normal Without the $\div 3$ For $\div 3$, even if B0 above Using $(2,11)$ for c co
6 $\begin{aligned} & \overrightarrow{O A}=\mathbf{i}-2 \mathbf{j}+4 \mathbf{k}, \overrightarrow{O B}=3 \mathbf{i}+2 \mathbf{j}+8 \mathbf{k}, \\ & \overrightarrow{O C}=-\mathbf{i}-2 \mathbf{j}+10 \mathbf{k} \end{aligned}$ (i) $\begin{aligned} & (\pm) 2 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k} \\ & (\pm) 4 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k} \end{aligned}$ $\begin{aligned} & \overrightarrow{A B} \cdot \overrightarrow{C B}=16 \\ & \overrightarrow{A B} \cdot \overrightarrow{C B}=\sqrt{36} \sqrt{36} \cos \theta \\ & \theta=63.6^{\circ} \end{aligned}$ (ii) $\begin{aligned} & \text { Perimeter }=6+6+\sqrt{40} \\ & \text { or } 6+6+6 \sin 31.8^{\circ} \times 2 \\ & \rightarrow 18.32 \end{aligned}$	B1 B1 M1 M1 M1 A1 [6] M1 A1 [2]	co co Needs to be scalar. For product of 2 moduli and cosine All correct. Correct overall method for perimeter. co
7 (i) $\sin \frac{1}{2} \theta=\frac{6}{10}$ Angle $D O E=1.287$ radians. (ii) $P=12+12+2 \times 10 \times$ angle $B O D$ Angle $B O D=(\pi-1.287)$ $\rightarrow 61.1$ (iii) Sector $D O E=1 / 2 \times 10^{2} \times 1.287$ Triangle $D O E=1 / 2 \times 10^{2} \times \sin 1.287$ Area $=\pi \times 10^{2}-(2$ sectors -2 triangles $)$ (or $48+48+2 \times 1 / 2 \times 10^{2} \times(\pi-1.287)$ $\rightarrow 281$ or 282	$\begin{array}{lr} \text { M1 } & \\ & \\ \text { A1 } & \\ & {[2]} \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & {[3]} \\ \text { M1 } & \\ \text { M1 } & \end{array}$ A1	Use of trig with/without radians co - answer given. Use of $s=r \theta$ for arc length. Correct angle co Correct formula used with radians. Correct formula used with radians. co

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	13

8 (i) Mid-point of $A C=(2,3)$ Gradient of $A C=1 / 3$ Gradient of $B D=-3$ Equation $y-3=-3(x-2)$ (ii) If $x=0, y=9, B(0,9)$ Vector move $D(4,-3)$ (iii) $\begin{aligned} & A C=\sqrt{40} \\ & B D=\sqrt{160} \\ & \text { Area }=40 \end{aligned}$ (or by matrix method M2 A1)	$\begin{array}{\|lll} \hline \text { B1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ & & \\ \text { B1 } \sqrt{ } & \\ \text { M1 } & \text { A1 } \\ & & {[3]} \\ & & \\ \text { M1 } & \\ \text { M1 } & & \\ & & {[3]} \end{array}$	Co Use of $m_{1} m_{2}=-1$ Co $\sqrt{ }$ on his equation. Valid method. co. Correct use on either $A C$ or $B D$, Full and correct method. co
$9 \quad y=x+\frac{4}{x}$ (i) $\begin{aligned} & x+\frac{4}{x}=5 \rightarrow A(1,5), B(4,5) \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=1-\frac{4}{x^{2}} \\ & =0 \text { when } x=2, M(2,4) \end{aligned}$ (ii) Vol of cylinder $=\pi 5^{2} .3$ Vol under curve $=\pi \int y^{2} \mathrm{~d} x$ $\text { Integral }=\frac{x^{3}}{3}-\frac{16}{x}+8 x$ Uses his limits " 1 to 4 " $\rightarrow 75 \pi-57 \pi=18 \pi$		co. co. Differentiates. Setting to 0 . co. Any valid method. Attempt at integrating y^{2} Allow if no π present. Using his limits. co.
$10 \mathrm{f}: x \mapsto 2 x^{2}-8 x+14$ (i) $\begin{aligned} & y+k x=12, \text { Sim Eqns. } \\ & \rightarrow 2 x^{2}-8 x+k x+2=0 \\ & \text { Use of } b^{2}-4 a c \\ & \rightarrow(k-8)^{2}=16 \rightarrow k=12 \text { or } 4 . \end{aligned}$ (ii) $2 x^{2}-8 x+14=2(x-2)^{2}+6$ (iii) Range of $\mathrm{f} \geqslant 6$. (iv) Smallest $A=2$ (v) Makes x the subject Order of operations correct. $\mathrm{g}^{-1}(x)=\sqrt{\frac{x-6}{2}}+2$		Complete elimination of y (or x) Uses $b^{2}-4 a c$ on eqn $=0$, no " x " in a, b, c. co.co $\sqrt{ }$ for c or from calculus. \checkmark to answer to (ii). Could interchange x, y first. Order must be correct. co

