		970	9 s10 ms 13
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9709	13

			1
1	(i) $a = 12, ar = -6 \rightarrow r = -\frac{1}{2}$	M1	Attempt at <i>r</i> from " <i>ar</i> "
	$ar^9 = \frac{-3}{128}$	M1 A1	ar^9 must be correct. co
		[3]	
	(ii) $S_{\infty} = \frac{a}{1-r}$ used $\rightarrow 8$	M1 A1	Correct formula used. M1 needs $ r < 1$
		[2]	
2	(i) $\left(x-\frac{2}{x}\right)^6 = x^6 - 12x^4 + 60x^2$	B1 ×3 [3]	со
	(ii) $\times (1 + x^2) \rightarrow 60 - 12 = 48$	M1 A1√ [2]	Must be exactly 2 terms. $\sqrt{10}$ from his (i).
3	$f: x \mapsto a + b \cos x$		
	(i) $f(0) = 10, a + b = 10$		
	$f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$	B1	EITHER OF THESE
	$\rightarrow a = 4, b = 6$	B1	both co
	(ii) Range is -2 to 10.	$B1\sqrt{\begin{bmatrix}2\\\\1\end{bmatrix}}$	\sqrt{a} for his " $a - b$ " to " $a + b$ "
	(iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$	B1	For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere.
	$\rightarrow 4-3\sqrt{3}$	B1 [2]	со
4	(i) $2\sin x \tan x + 3 = 0$		
	$2\sin x \frac{\sin x}{\cos x} + 3 = 0$	M1	For using $\tan = \sin \div \cos$
	$2\frac{\left(1-\cos^2 x\right)}{\cos x} + 3 = 0$	M1	For using $\sin^2 + \cos^2 = 1$ and everything correct
	$\rightarrow 2\cos^2 x - 3\cos x - 2 = 0$	[2]	Answer given – check.
	(ii) $2\cos^2 x - 3\cos x - 2 = 0$ $\rightarrow \cos x = -\frac{1}{2} \text{ or } 2$ $x = 120^\circ \text{ or } 240^\circ$	M1 A1 B1√ [3]	Solution of quadratic. co. $\sqrt{1000}$ for 360 – his answer.

9709 s10 ms 13

	Page 5	Mark Scheme: Teach	ers' versi	on	9709 Syllabus	9_ <u>s10_ms_1</u> 3 Paper		
		GCE AS/A LEVEL – May/June 2010			9709	13		
		·						
5	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{\sqrt{3x-x}}$	2						
	(i) $x = 2$, ta	ngent has gradient 3	M1	Use of $m_1 m_2$	$_2 = -1$ with dy/dx			
	\rightarrow norm	hal has gradient $-\frac{1}{3}$	M1 A1	Correct for	Correct form of line eqn. for normal			
	$\rightarrow y-1$	$1 = -\frac{1}{3}(x-2)$	[3]					
	(ii) Integrat	$e \to 6 \frac{\sqrt{3x-2}}{\frac{1}{2}} \div 3$	B1 B1	Without the For ÷3, eve	e ÷3 n if B0 above			
	-	$4\sqrt{3x-2} + c$ through (2,11) $4\sqrt{3x-2} + 3$	M1 A1 [4]	Using (2, 1 co	1) for <i>c</i>			
6	$\overrightarrow{OA} = \mathbf{i} - 2\mathbf{j}$ $\overrightarrow{OC} = -\mathbf{i} - \mathbf{j}$	$+4\mathbf{k}, \ \overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} + 8\mathbf{k},$ $2\mathbf{j} + 10\mathbf{k}$						
	(i) (±) 2i + (±) 4i +	$4\mathbf{j} + 4\mathbf{k}$ $4\mathbf{j} - 2\mathbf{k}$	B1 B1	co co				
	$\overrightarrow{AB.CB}$ $\overrightarrow{AB.CB}$ $\overrightarrow{AB.CB}$ $\theta = 63.$	$=\sqrt{36}\sqrt{36}\cos\theta$	M1 M1 M1 A1 [6]	Needs to be For produc All correct	t of 2 moduli and	cosine		
	• •	er = $6 + 6 + \sqrt{40}$ + $6 \sin 31.8^{\circ} \times 2$ 2	M1 A1 [2]	Correct ove co	erall method for p	berimeter.		
7	(i) $\sin \frac{1}{2}\theta$	10	M1		with/without rad	ians		
	(ii) <i>P</i> = 12 -	DOE = 1.287 radians. + $12 + 2 \times 10 \times$ angle BOD $ROD = (\pi - 1.287)$	A1 [2] M1 M1 A1 [3]	co – answe Use of <i>s</i> = <i>r</i> Correct ang co	θ for arc length.			
	Triangle Area =	$DOE = \frac{1}{2} \times 10^{2} \times 1.287$ e $DOE = \frac{1}{2} \times 10^{2} \times \sin 1.287$ $\pi \times 10^{2} - (2 \text{ sectors} - 2 \text{ triangles})$ $48 + 2 \times \frac{1}{2} \times 10^{2} \times (\pi - 1.287)$ M1 M1	M1 M1		mula used with rac mula used with rac			
	$\rightarrow 281$		A1 [3]	со				

	Page 6		Mark Scheme: Teachers' version		Syllabus	9_ <u>s10_ms_</u> Paper	
			GCE AS/A LE	VEL – May/June 20	010	9709	13
8	(i) Mid-point of $AC = (2, 3)$ Gradient of $AC = \frac{1}{3}$ Gradient of $BD = -3$ Equation $y - 3 = -3(x - 2)$		B1 M1 A1	Co Use of $m_1m_2 = -1$ Co			
	(ii)	(ii) If $x = 0$, $y = 9$, $B(0, 9)$ Vector move $D(4, -3)$		[3] B1√ M1 A1 [3]	$\sqrt{100}$ on his equation $\sqrt{100}$ valid method		
	(iii) $AC = \sqrt{40}$ $BD = \sqrt{160}$ Area = 40 (or by matrix method M2 A1)		M1 M1 A1 [3]	Correct use on either <i>AC</i> or <i>BD</i> , Full and correct method. co			
)	<i>y</i> =	$x + \frac{4}{x}$					
	(i)	$x + \frac{4}{x} =$	$5 \to A(1, 5), B(4, 5)$	B1 B1	co. co.		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{1}{2}$	$-\frac{4}{x^2}$ n x = 2, M(2, 4).	M1 DM1 A1	Differentiates Setting to 0.		
	(ii)	Vol of c	ylinder = $\pi 5^2 .3$ er curve = $\pi \int y^2 dx$	[5] B1 M1	Any valid me Attempt at in	ethod.	
			$=\frac{x^{3}}{3}-\frac{16}{x}+8x$ limits "1 to 4"	A2, 1, 0 DM1	Allow if no <i>i</i>		
			$-57\pi = 18\pi$	A1 [6]	co.		
10	f: <i>x</i>	$r \mapsto 2x^2 -$	-8x + 14				
		$\rightarrow 2x^2 -$ Use of b	12, Sim Eqns. 8x + kx + 2 = 0 $x^{2} - 4ac$ $x^{2} = 16 \rightarrow k = 12 \text{ or } 4.$	M1 A1 M1 A1		mination of y (or c on eqn = 0, no	,
		$2x^2 - 8x$ Range of	$+14 = 2(x-2)^2 + 6$ ff ≥ 6	$ \begin{array}{c} [4] \\ B1 \times 3 \\ [3] \\ B1 \end{array} $	$\sqrt{1}$ for <i>c</i> or from the form the fo	om calculus	
		Smallest		[1] B1√	$\sqrt{101}$ c or inc		
	(v)		the subject operations correct.	[1] M1 M1	Could interch Order must b	hange x, y first.	
		$\mathbf{g}^{-1}(\mathbf{x}) =$	$\sqrt{\frac{x-6}{2}}+2$	A1 [3]	со		