| Page 4 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | 9709 | 12 |


| 1 (i) $\begin{aligned} & 3(2 \sin x-\cos x)=2(\sin x-3 \cos x) \\ & \rightarrow 6 s-3 c=2 s-6 c \rightarrow 4 s=-3 c \\ & \rightarrow \tan x=-\frac{3}{4} \end{aligned}$ <br> (ii) $\begin{aligned} & x=180-36.9=143.1^{\circ} \text { or } \\ & x=360-36.9=323.1^{\circ} \end{aligned}$ | $\begin{array}{lr} \text { M1 } & \\ \text { A1 } & \\ & \\ \text { B1 } & \\ \text { B1 } & \\ & \\ & \\ \hline \end{array}$ | Expanding, collecting, use of $t=s \div c$ <br> Answer given. All correct. <br> co <br> For $180+$ first answer. |
| :---: | :---: | :---: |
| $2 y=\frac{a}{x}$ $\text { Volume }=\pi \int\left(\frac{a^{2}}{x^{2}}\right) \mathrm{d} x=(\pi)\left[\frac{-a^{2}}{x}\right]$ <br> Use of limits 1 to $3 \rightarrow \frac{2 \pi a^{2}}{3}$ <br> Equates to $24 \pi \rightarrow a=6$ | M1 <br> B1 <br> M1 <br> A1 <br> [4] | For using correct formula with $\pi$. For correct integration of $x^{-2}$ only <br> Must be using $y^{2}$ or $\pi y^{2}$. <br> Co, allow $\pm 6$. |
| $3 \mathrm{f}: x \mapsto 4 x-2 x^{2}$, $\mathrm{g}: x \mapsto 5 x+3 .$ <br> (i) Turning point at $x=1$. Range is $\leqslant 2$. <br> (ii) $\begin{aligned} & \operatorname{gf}(x)=5\left(4 x-2 x^{2}\right)+3 \\ & =k \text { and use of } b^{2}-4 a c \\ & \rightarrow k=13 \end{aligned}$ | M1 <br> A1 <br> [2] <br> B1 <br> M1 <br> A1 <br> [3] | Calculus or completing the square etc. <br> Condone $<$ instead of $\leqslant$. <br> For putting f into g . <br> Setting to $k$, using $b^{2}-4 a c$ co |
| 4 Gradient of $L_{1}$ is $\frac{1}{3}$. <br> Equation of $L_{1}$ is $y-3=\frac{1}{3}(x+1)$ <br> Gradient of $A B$ is $-\frac{1}{2}$. Perp $=2$. <br> Equation of $L_{2}$ is $y-1=2(x-3)$. <br> Sim eqns $3 y=x+10, y=2 x-5$. <br> $\rightarrow(5,5)$ | M1 A1 <br> M1 <br> A1 <br> M1 <br> A1 <br> [6] | M1 for equation for his $m$. A1 co. <br> Use of $m_{1} m_{2}=-1$ <br> co <br> Method of solution <br> co |


| Page 5 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | $\mathbf{9 7 0 9}$ | $\mathbf{1 2}$ |


| 5 (i) $\begin{aligned} & -8+3+p=0 \\ & \rightarrow p=5 . \end{aligned}$ $\text { (ii) } \begin{aligned} & V e c t o r ~ \\ & \overrightarrow{A B}=\mathbf{b}-\mathbf{a} \\ = & \mathbf{i}-2 \mathbf{j}+(p-1) \mathbf{k} \\ & 36+4+(p-1)^{2}=49 \\ & \rightarrow p=4 \text { or } p=-2 \end{aligned}$ | $\begin{array}{lll} \text { M1 } & \\ \text { A1 } & \\ & & {[2]} \\ \text { M1 } & \\ & \\ \text { M1 } & \text { A1 } \\ \text { A1 } & \\ & & {[4]} \end{array}$ | Must be scalar. <br> co. <br> Must be $\mathbf{b}-\mathbf{a}$ or $\mathbf{a}-\mathbf{b}$ <br> Must be sum of 3 squares. A1 $\sqrt{ }$ lost. co. |
| :---: | :---: | :---: |
| 6 (i) $1+5 a x+10 a^{2} x^{2}$ <br> (ii) $\begin{aligned} \times(1-2 x) \\ \rightarrow a=\frac{2}{5}\end{aligned}$ <br> (iii) Coeff of $x^{2}$ is $-10 a+10 a^{2}$ $\rightarrow-4+1.6=-2.4$ | B2,1 <br> A1 <br> [2] <br> M1 A1V <br> A1 <br> [3] | Loses 1 mark for each incorrect term. <br> Needs to consider exactly 2 terms. co <br> Needs to consider exactly 2 terms. co |
| 7 (a) $\begin{aligned} & a=100, d=5, \\ & n=41 \\ & \rightarrow S=8200 \end{aligned}$ <br> (b) (i) $\begin{aligned} & a+a r+a r^{2} \text { or } a \frac{\left(1-r^{3}\right)}{1-r} \\ & =35 \rightarrow a=45 \end{aligned}$ <br> (ii) $S_{\infty}=\frac{a}{1-r}=27$ | B1 <br> M1 A1 <br> [3] <br> B1 <br> M1 A1 <br> [3] <br> M1 A1V <br> [2] | co <br> Use of correct sum formula. co <br> co <br> Solution of equation. co <br> Correct use of formula. $V$ for his $a$. |
| 8 (i) $\begin{aligned} & 4 x h+2 x^{2}=96 \\ & \rightarrow h=\frac{24}{x}-\frac{x}{2} \\ & V=x^{2} h \rightarrow V=24 x-\frac{x^{3}}{2} . \end{aligned}$ <br> (ii) $\begin{aligned} & \frac{\mathrm{d} V}{\mathrm{~d} x}=24-\frac{3 x^{2}}{2} \\ & =0 \text { when } x=4 \\ & \rightarrow V=64 . \end{aligned}$ <br> (iii) $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-3 x \rightarrow$ Max. |  | Needs to consider at least 5 areas. <br> co <br> for $V=x^{2} h$ with $h$ as $\mathrm{f}(x)$ <br> co <br> Sets differential to 0 and solves. co <br> Any valid method. co. |

9709 s10 ms 12

| Page 6 | Mark Scheme: Teachers' version | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2010 | $\mathbf{9 7 0 9}$ | $\mathbf{1 2}$ |


| $9 y=(x-2)^{2}$ and $y+2 x=7$ <br> Elimination of $y \rightarrow x^{2}-2 x-3=0$ <br> $\rightarrow A(-1,9)$ and $B(3,1)$ <br> Area under line $=1 / 2 \times 4 \times 10$ <br> or $\left[7 x-x^{2}\right]$ from -1 to 3 . <br> Area under curve $=\left[\frac{(x-2)^{3}}{3}\right]$ <br> or $\left[\frac{x^{3}}{3}-2 x^{2}+4 x\right]$ from -1 to 3 <br> $\rightarrow 10^{2} / 3$. <br> [ok to use $\int\left(y_{1}-y_{2}\right) \mathrm{d} x$-marks the same] | M1 <br> DM1A1 <br> M1 <br> M1 <br> A1 <br> M1 <br> A1 <br> [8] | $y$ (or $x$ ) removed completely. <br> Soln of quadratic. Both points correct. <br> Uses any valid method - integration or area of trapezium etc. <br> Any attempt at integration. <br> Correct integration in either form. <br> Correct use of limits in an integral. <br> co |
| :---: | :---: | :---: |
| $10 \quad y=\frac{1}{6}(2 x-3)^{3}-4 x$ <br> (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{6} \times 3 \times(2 x-3)^{2} \times 2-4$ <br> (ii) $\begin{aligned} & x=0, y=-\frac{27}{6}, \\ & y+\frac{27}{6}=5 x \rightarrow 2 y+9=10 x \end{aligned}$ <br> (iii) $\begin{aligned} & (2 x-3)^{2}-4 \quad(>0) \\ & \rightarrow x=2^{1 / 2} \text { or } 1 / 2 \\ & \rightarrow x>2^{1 / 2}, x<1 / 2 . \end{aligned}$ | $\begin{array}{lll} \text { B2,1 } & \\ \text { B1 } & \\ & {[3]} \\ \text { B1 } & \\ \text { M1 } & \text { A1 } \\ & & {[3]} \\ & & \\ \text { M1 } & \\ & \text { DM1 } & \\ \text { A1 } & \\ & & {[3]} \end{array}$ | Everything but the " $\times 2$ " <br> For the " $\times 2$ ", even if B0 given above. <br> For correct $y$ value <br> Must be using calculus for $m$. co. <br> (ok unsimplified) <br> Links $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with 0 <br> Method for quadratic - lead to 2 answers Correct set of values. |
| $11 \mathrm{f}: x \mapsto 4-3 \sin x$ <br> (i) $4-3 \sin x=2 \rightarrow \sin x=2 / 3$ <br> $\rightarrow x=0.730$ or 2.41 <br> (ii) <br> (iii) $k<1, k>7$. <br> (iv) $A=\frac{3 \pi}{2}$. <br> (v) $\sin x=1 / 3-$ or using inverse $\mathrm{g}^{-1}(3)=2.80$ | M1 <br> A1 A1V <br> [3] <br> B1 <br> B1 <br> [2] <br> B1 B1 <br> [2] <br> B1 <br> [1] <br> M1A1 <br> [2] | Makes $\sin x$ the subject + solution. <br> co. $\sqrt{ }$ for $\pi-$ first answer. <br> Must be 1 complete oscillation. <br> Shape and position correct, in $1^{\text {st }}$ quadrant, curve not lines. <br> B 1 for $k=1,7, \mathrm{~B} 1$ for answer Or B1 for $k<1$, B1 for $k>7$ <br> co <br> M1 for soln of $3=4-3 \sin x$ or inverse. |

