Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	11

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	11

$5 \quad x \mapsto 2 \sin ^{2} x-3 \cos ^{2} x$ (i) $\begin{aligned} & 2\left(1-\cos ^{2} x\right)-3 \cos ^{2} x \\ & \rightarrow 2-5 \cos ^{2} x \quad(a=2, b=-5) \end{aligned}$ (ii) Values are - 3 and 2 $\text { (iii) } \begin{aligned} & 2-5 \cos ^{2} x=-1 \\ & \rightarrow \cos ^{2} x=0.6 \\ & x=0.685,2.46 \text { (accept } 0.684) \end{aligned}$	M1 A1 [2] B1 $\sqrt{B 1 \sqrt{ } \sqrt{2}}$ [2] B1 $\sqrt{ }$ B1 B1 $\sqrt{ }$ [3]	Uses $s^{2}+c^{2}=1$ co co $\sqrt{ }$ for $\pi-$ (first answer) SC B1 for both 39.2 and 140.8
$6 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \sqrt{x}-6$ (i) $\begin{align*} & y=\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}-6 x(+c) \tag{9,2}\\ & (9,2) 2=54-54+c \\ & \rightarrow c=2 \end{align*}$ (ii) $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \rightarrow x=4 \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d}^{2} x}=\frac{3 x^{-\frac{1}{2}}}{2} \\ & \rightarrow+\mathrm{ve}(\text { or } 3 / 4) \text { Minimum } \end{aligned}$	B2,1 M1 A1 [4] B1 M1 A1	Loses 1 for each error - ignore $+c$ Uses $(9,2)$ with integration to find c. co. Ignore any y-value Any valid method. co.
$7 \quad y=2-\frac{18}{2 x+3}$ (i) A is $(3,0)$ $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=18(2 x+3)^{-2} \times 2 \\ & \text { If } x=3, m=\frac{4}{9} \\ & m \text { of normal }=-\frac{9}{4} \end{aligned}$ Equation of normal $y=-\frac{9}{4}(x-3)$ $\rightarrow 4 y+9 x=27$ (ii) Normal meets y-axis at $\left(0,6^{3 / 4}\right)$ Curve meets y-axis at $(0,-4)$ $\rightarrow B C=10^{3 / 4}$	 [6] M1 A1 [2]	Anywhere - but not from given answer B1 for $18(2 x+3)^{-2}$, B1 for $\times 2$ Use of $m_{1} m_{2}=-1$ with m from $\mathrm{d} y / \mathrm{d} x$ Correct method for normal co (answer was given) Needs to put $x=0$ in both normal and curve. co

9709 s10 ms 11

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2010	9709	11

$8 \quad$ (i) y-step $\div x$-step $=2$ $\rightarrow m=1$ (ii) Eqn of $A C y+2=-2(x-3)$ Eqn of $B C \quad y-22=(x-15)$ Sim eqns $y+2 x=4, y=x+7$ $\rightarrow C(-1,6)$ (iii) M is $(9,10)$ Perp gradient is $-1 / 2$ $\rightarrow 2 y+x=29, y=x+7$ Sim eqns $\rightarrow D(5,12)$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ & \\ & {[2]}\end{array}$ M1 A1 $\sqrt{ }$ A1 $\sqrt{ }$ A1 [4] B1 M1 M1 A1 [4]	Gradient $=y$-step $\div x$ step used co Correct form of one of lines. $\sqrt{ }$ to his m $\sqrt{ }$ to his m co co Use of $m_{1} m_{2}=-1$ Solve sim eqns for their $B C \&$ perp. bis co
9 (i) $2 x^{2}-12 x+7=2(x-3)^{2}-11$ (ii) Range of $\mathrm{f} \geqslant-11$ (iii) $\begin{aligned} & 2 x^{2}-12 x+7<21 \\ & \rightarrow 2 x^{2}-12 x-14 \text { or } \\ & 2(x-3)^{2}<32 \\ & \rightarrow \text { end-values of } 7 \text { or }-1 \\ & \rightarrow-1<x<7 \end{aligned}$ (iv) $\operatorname{gf}(x)=2\left(2 x^{2}-12 x+7\right)+k=0$ Use of $b^{2}-4 a c$ $\begin{aligned} & \rightarrow 24^{2}-16(14+k) \\ & \rightarrow k=22 \end{aligned}$	$$	B1 for each value - accept if a, b, c not specifically quoted. $\sqrt{ }$ to his " c ". allow $>$ or \geqslant. 3 -term quadratic to 0 or $2(x-3)^{2}<32$ Correct end-values co Puts f into g. co. Used correctly with quadratic co.
$10 \overrightarrow{O A}=\mathbf{i}+3 \mathbf{j}+3 \mathbf{k}, \overrightarrow{O C}=3 \mathbf{i}-\mathbf{j}+\mathbf{k}$. (i) $\begin{aligned} & \overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{O C}=4 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k} \\ & \text { Unit vector }=\frac{1}{6}(4 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k}) \end{aligned}$ (ii) $\begin{aligned} & \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}=2 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k} \\ & \overrightarrow{A C} \cdot \overrightarrow{O B}=8-8-8=-8 \\ & \|\overrightarrow{O B}\|=6 ;\|\overrightarrow{A C}\|=\sqrt{24} \\ & -8=6 \times \sqrt{24} \times \cos \theta \\ & \theta=105.8^{\circ} \rightarrow 74.2^{\circ} \end{aligned}$ (iii) $O A=\sqrt{19}$ or $O C=\sqrt{11}$ Perimeter $=2(\sqrt{ }+\sqrt{ })$ $\rightarrow 15.4$	B 1 $\mathrm{M} 1 \mathrm{~A} 1 \sqrt{ } \sqrt{ }$ [3] $\begin{array}{lr} \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & {[5]} \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \end{array}$	co Divides by the modulus. \vee on $\overrightarrow{O B}$. co Use of $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ Correct method for a modulus. Connected correctly provided $\overrightarrow{O B}, \overrightarrow{A C}$ used co (accept acute or obtuse) Used as a length. co (accept 15.3)

