Question	Answer	Marks	Guidance
1	$(\lambda=) \frac{5}{12}=0.417$ or better	$\mathbf{B 1}$	
	$1-\mathrm{e}^{-\frac{5}{12}}\left(1+\frac{5}{12}\right)$	$\mathbf{M 1}$	$1-\mathrm{P}(X=0$ or 1), by Poisson, using any λ, allow $1-\mathrm{P}(X=0$ or 1 or 2) for M1
	$=0.0661$ or $0.0662(3 \mathrm{sf})$	$\mathbf{A 1}$	Final answer SC use of Binomial (from $0.06607 \ldots) \mathrm{B} 1$ only
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	$2 \times z \times \frac{3.2}{10}=1.25$	M1	OE Allow without ' $2 \times$ '
	$z=1.953$	A1	SOI
	ϕ ('their 1.953') ($=0.9746$)	M1	
	$\begin{aligned} & =1-2\left(1-{ }^{‘} 0.9746 ’\right) \\ & =0.9492 \end{aligned}$	M1	OE
	$\alpha=94.9$ or 95	A1	CWO
		5	

Question	Answer	Marks	Guidance
3(a)	$\text { est }(\mu)=37.6 \text { or } \frac{1504}{40} \text { or } \frac{188}{5}$	B1	
	$\text { est }\left(\sigma^{2}\right)=\frac{40}{39}\left[\frac{57760}{40}-37.6^{2}\right]=31.0154=\frac{2016}{65}$	M1	Correct substitution in any correct formula $\frac{1}{39}\left[57760-\frac{1504^{2}}{40}\right]$
	$=31 .(0)(3 \mathrm{sf})$	A1	Accept $\frac{2016}{65}$ or $31 \frac{1}{65}$
		3	
3(b)	H_{0} : Pop mean $($ or $\mu)=39.2$ H_{1} : Pop mean $($ or $\mu)<39.2$	B1	Both. Not just 'mean'
	$\frac{37.6^{\prime}-39.2}{\frac{\sqrt{31.0154^{\prime}}}{\sqrt{40}}}$	M1	Allow use of biased variance (30.2), must have $\sqrt{ } 40$
	$=-1.817$	A1	SC FT use of biased $=-1.840$ for A1
	${ }^{\prime} 1.817{ }^{\prime}>1.645 \mathrm{OE}$	M1	Valid comparison 'their 1.817 ' with 1.645 or valid area comparison $0.0346<0.05 \mathrm{OE}$
	There is evidence that mean time has decreased	A1FT	FT their 1.817; in context, not definite, no contradictions SC For 2 tail test: $\mathrm{H}_{1}: \mu \neq 39.2$ and comp 1.96, max B0M1A1M1A0 (no FT for final mark)
		5	

Question	Answer	Marks	Guidance
4(a)	$\lambda(=0.4 \times 365 \div 50)=2.92$	B1	
	$\mathrm{e}^{-2.92}\left(1+2.92+\frac{2.92^{2}}{2}\right)$	M1	Any λ. Allow one end error
	$=0.441(3 \mathrm{sf})$	A1	
		3	
4(b)	$\mathrm{e}^{-\lambda}>0.95$	M1	Allow ' $=$ ' throughout
	$-\lambda>\ln 0.95$ or $\lambda<0.051293$ OE	M1	Attempt \ln both sides
	'0.051293' $\times 50 \div 0.4(=6.411)$	M1	
	Largest n is 6 (3 sf) Allow $n=6$ or $n \leqslant 6$ (NOT $n<6$ or $n \geqslant 6$ as final answer)	A1	SC Trial and Improvement M1 for $\mathrm{e}^{-\lambda}>0.95$ SOI; M1 for $\lambda=n \times \frac{0.4}{50}$; M1 for use of both $n=6$ giving 0.9531 and $n=7$ giving 0.9455 ; A1 $n=6$
		4	

Question	Answer	Marks	Guidance
$5(\mathrm{c})$	Curve is symmetrical about $x=0$	$\mathbf{B 1}$	May be implied by sketch. No contradictions or integrate $\mathrm{f}(x)$ between $-q$ and $+q$ and equate to 0.5 leading to $q^{3}-300 q+1000=0$ oe
	$q=3.47$	$\mathbf{B 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(a)	$\mathrm{N}(310,50)$	B1	SOI
	$\frac{300-' 310^{\prime}}{\sqrt{{ }^{\prime} 50^{\prime}}}(=-1.414)$	M1	Standardise using their values
	$\Phi\left({ }^{6}-1.414{ }^{\prime}\right)=1-\phi\left({ }^{\prime} 1.414{ }^{\prime}\right)$	M1	Area consistent with their values
	$=0.0786$ or $0.0787(3 \mathrm{sf})$	A1	As final answer
		4	

Question	Answer	Marks	Guidance
6(b)	$\mathrm{P}(L-2 S>0)$	M1	OE SOI
	$\mathrm{E}(X)=200-2 \mathrm{x} 110$ or $=-20$	B1	OE seen
	Var $=30+2^{2} \times 20$ or $=110$	B1	Seen
	$\begin{aligned} & \mathrm{N}(-20,110) \\ & \frac{0-\left('^{\prime}-20^{\prime}\right)}{\sqrt{\prime 10^{\prime}}}(=1.907) \end{aligned}$	M1	Standardising with their values. Mean and variance must come from a combination attempt.
	$1-\Phi\left({ }^{\prime} 1.907\right.$ ')	M1	Correct area consistent with their working
	$=0.0283(3 \mathrm{sf})$	A1	Final answer
		6	

Question	Answer	Marks	Guidance
$7(\mathrm{a})$	$\mathrm{P}(X \leqslant n)(n \leqslant 20)$ attempted, using B(20, 0.95$)$	M1	OE
	$\mathrm{P}(X \leqslant 17)$ or $\mathrm{P}(X \leqslant 16)$ attempted, using B(20, 0.95$)$	$\mathbf{M 1}$	OE
	$(\mathrm{P}(X \leqslant 17))=0.0755$ and $(\mathrm{P}(X \leqslant 16))=0.0159$	$\mathbf{A 1}$	$\mathrm{OE}(0.925$ and 0.984$)$ both correct
	Rej region is $X \leqslant 16$ or $\mathrm{X}<17$	$\mathbf{A 1}$	Dependent on M1M1 and previous answers correct to at least $0.075 / 0.076$ and 0.016 or $0.92 / 0.93$ and 0.98 Correct unsupported answers of 0.0755 and 0.0159 OE scores M1 M1 A0
		$\mathbf{4}$	

