Question	Answer	Marks	Guidance
1	$(\lambda =) \frac{5}{12} = 0.417$ or better	B1	
	$1 - e^{-\frac{5}{12}} \left(1 + \frac{5}{12}\right)$	M1	$1 - P(X = 0 \text{ or } 1)$, by Poisson, using any λ , allow 1 - P(X = 0 or 1 or 2) for M1
	= 0.0661 or 0.0662 (3 sf)	A1	Final answer SC use of Binomial (from 0.06607) B1 only
		3	

Question	Answer	Marks	Guidance
2	$2 \times z \times \frac{3.2}{10} = 1.25$	M1	OE Allow without '2 \times '
	<i>z</i> = 1.953	A1	SOI
	$\phi(`their 1.953') (= 0.9746)$	M1	
	= 1 - 2(1 - `0.9746') = 0.9492	M1	OE
	$\alpha = 94.9 \text{ or } 95$	A1	CWO
		5	

March 2020

<u>9709_m20_</u>ms_62

Question	Answer	Marks	Guidance
3(a)	est (μ) = 37.6 or $\frac{1504}{40}$ or $\frac{188}{5}$	B1	
	est $(\sigma^2) = \frac{40}{39} \left[\frac{57760}{40} - 37.6^2 \right] = 31.0154 = \frac{2016}{65}$	M1	Correct substitution in any correct formula $\frac{1}{39} \left[57760 - \frac{1504^2}{40} \right]$
	= 31.(0) (3 sf)	A1	Accept $\frac{2016}{65}$ or $31\frac{1}{65}$
		3	
3(b)	H ₀ : Pop mean (or μ) = 39.2 H ₁ : Pop mean (or μ) < 39.2	B1	Both. Not just 'mean'
	$\frac{\frac{'37.6'-39.2}{\sqrt{'31.0154'}}}{\sqrt{40}}$	M1	Allow use of biased variance (30.2), must have $\sqrt{40}$
	= -1.817	A1	SC FT use of biased = -1.840 for A1
	'1.817' > 1.645 OE	M1	Valid comparison ' <i>their</i> 1.817' with 1.645 or valid area comparison 0.0346 < 0.05 OE
	There is evidence that mean time has decreased	A1FT	FT <i>their</i> 1.817; in context, not definite, no contradictions SC For 2 tail test: H_1 : $\mu \neq 39.2$ and comp 1.96, max B0M1A1M1A0 (no FT for final mark)
		5	

Question	Answer	Marks	Guidance
4(a)	$\lambda (= 0.4 \times 365 \div 50) = 2.92$	B1	
	$e^{-2.92}(1+2.92+\frac{2.92^2}{2})$	M1	Any λ . Allow one end error
	= 0.441 (3 sf)	A1	
		3	
4(b)	$e^{-\lambda} > 0.95$	M1	Allow '=' throughout
	$-\lambda > \ln 0.95 \text{ or } \lambda < 0.051293 \text{ OE}$	M1	Attempt ln both sides
	'0.051293' × 50 ÷ 0.4 (= 6.411)	M1	
	Largest <i>n</i> is 6 (3 sf) Allow $n = 6$ or $n \le 6$ (NOT $n < 6$ or $n \ge 6$ as final answer)	A1	SC Trial and Improvement M1 for $e^{-\lambda} > 0.95$ SOI; M1 for $\lambda = n \times \frac{0.4}{50}$; M1 for use of both n = 6 giving 0.9531 and $n = 7$ giving 0.9455; A1 $n = 6$
		4	

Question	Answer	Marks	Guidance
5(a)	$\frac{3}{4000} \int_{5}^{10} (100 - x^2) dx$ $= \frac{3}{4000} \left[100x - \frac{x^3}{3} \right]_{5}^{10}$	M1	Attempt integration of $f(x)$, ignore limits. Condone omission of $\frac{3}{4000}$
	$= \frac{3}{4000} \left(1000 - \frac{1000}{3} - 500 + \frac{125}{3} \right)$	M1	Correct limits 5 and 10. OE SOI
	= 0.156 (3 sf) or $\frac{5}{32}$	A1	For fully correct working seen including substitution of limits
		3	
5(b)	$\frac{3}{4000} \int_{p}^{10} (100 - x^2) \mathrm{d}x = \frac{1}{4}$	M1	Attempt integration of $f(x)$ with any limits and $=\frac{1}{4}$ or $=\frac{3}{4}$ seen. Condone omission of $\frac{3}{4000}$
	$\frac{3}{4000} \left[100x - \frac{x^3}{3} \right]_p^{10} = \frac{1}{4}$	A1	Correct integration with correct limits seen (or implied for limits p and 10) and = $\frac{1}{4}$ OE Condone omission of $\frac{3}{4000}$
	$\frac{3}{4000} \left(1000 - \frac{1000}{3} - 100p + \frac{p^3}{3} \right) = \frac{1}{4}$	M1	Attempt substitution correct limits in their integration of $f(x)$. Accept limits 0 to p if clearly seen, accept limits -10 and p . Substitution must be seen.
	e.g. $\frac{2000}{3} - 100p + \frac{p^3}{3} = \frac{1000}{3}$ $p^3 - 300p + 1000 = 0$	A1	AG No errors seen
		4	

<u>9709_m20_</u>ms_62

Question	Answer	Marks	Guidance
5(c)	Curve is symmetrical about $x = 0$	B1	May be implied by sketch. No contradictions or integrate $f(x)$ between $-q$ and $+q$ and equate to 0.5 leading to q^3 -300 q + 1000 = 0 oe
	q = 3.47	B1	
		2	

Question	Answer	Marks	Guidance
6(a)	N(310, 50)	B1	SOI
	$\frac{300-310'}{\sqrt{50'}} \ (=-1.414)$	M1	Standardise using their values
	$\Phi(`-1.414') = 1 - \phi(`1.414')$	M1	Area consistent with their values
	= 0.0786 or 0.0787 (3 sf)	A1	As final answer
		4	

Question	Answer	Marks	Guidance
6(b)	P(L-2S>0)	M1	OE SOI
	E(X) = 200-2x110 or = -20	B1	OE seen
	$Var = 30 + 2^2 \times 20 \text{ or} = 110$	B1	Seen
	$\frac{N(-20, 110)}{\frac{0 - ('-20')}{\sqrt{110'}}} (= 1.907)$	M1	Standardising with their values. Mean and variance must come from a combination attempt.
	1 – Φ('1.907')	M1	Correct area consistent with their working
	= 0.0283 (3 sf)	A1	Final answer
		6	

Question	Answer	Marks	Guidance
7(a)	$P(X \le n) (n \le 20) \text{ attempted, using } B(20, 0.95)$	M1	OE
	$P(X \le 17)$ or $P(X \le 16)$ attempted, using B(20, 0.95)	M1	OE
	$(P(X \le 17)) = 0.0755 \text{ and } (P(X \le 16)) = 0.0159$	A1	OE (0.925 and 0.984) both correct
	Rej region is $X \le 16$ or X < 17	A1	Dependent on M1M1 and previous answers correct to at least 0.075/0.076 and 0.016 or 0.92/0.93 and 0.98 Correct unsupported answers of 0.0755 and 0.0159 OE scores M1 M1 A0
		4	

<u>9709_m20_</u>ms_62

Question	Answer	Marks	Guidance
7(b)	0.0159	B1	FT <i>their</i> rejection region, from Binomial in a , if P(X in rejection region) < 0.025
		1	
7(c)	Use of B(20, 0.7)	M1	
	P(X > 16 p = 0.7)	M1	Correct method using B(20, 0.7)
	= 0.107	A1	
		3	