Question	Answer	Marks	Guidance
1(a)	Power $=750000 / 10=75000 \mathrm{~W}$ or 75 kW	B1	Power $=$ WD/Time
		1	
1(b)	Driving force $\mathrm{DF}=75000 / 25$	B1FT	Using $P=\mathrm{DF} \times v$
	[DF -2400 = 16000a]	M1	Using Newton's $2^{\text {nd }}$ law
	$a=0.0375 \mathrm{~ms}^{-2}$	A1	Allow $a=\frac{3}{80}$
		3	

Question	Answer	Marks	Guidance
2(a)	$\left[1.44=0+1 / 2 \times 2 t^{2}\right]$	M1	For using a complete method which would lead to an equation for finding a value of t such as $s=u t+1 / 2 a t^{2}$ with $u=0, s=1.44$ and $a=2$
	$t=1.2 \mathrm{~s}$	A1	
		2	
2(b)	$R=0.4 g-3 \times \frac{3}{5}=0.4 g-3 \sin 36.9[=2.2]$	B1	
	$\left[3 \times \frac{4}{5}-F=3 \cos 36.9-F=0.4 \times 2\right] \quad[F=1.6]$	M1	Use Newton's $2^{\text {nd }}$ law, 3 terms, to find F.
	$\left[\mu=\frac{3 \times \frac{4}{5}-0.4 \times 2}{0.4 g-3 \times \frac{3}{5}}=\frac{1.6}{2.2}\right]$	M1	Use of $\mu=\frac{F}{R}$
	$\mu=0.727$	A1	Allow $\mu=\frac{8}{11}$
		4	

Question	Answer	Marks	Guidance
3(a)	Initial $\mathrm{KE}=1 / 2 \times 0.2 \times 5^{2}$ or Final KE $=1 / 2 \times 0.2 \times 3^{2}$	B1	
	$1 / 2 \times 0.2 \times 5^{2}=0.2 g h+1 / 2 \times 0.2 \times 3^{2}$	M1	Use conservation of energy
	$h=0.8$	A1	
		3	
3(b)	Apply work-energy equation from A to C	M1	
	$1 / 2 \times 0.2 \times 5^{2}-3.1+0.2 g \times 0.5=1 / 2 \times 0.2 v^{2}$	A1	Correct work-energy equation
	Speed $=2 \mathrm{~ms}^{-1}$	A1	
		3	

Question	Answer	Marks	Guidance
4(a)	Use the constant acceleration equations to obtain an expression for either $s_{A B}$ or $s_{B C}$ in terms of a	M1	
	$s_{A B}=2 \times 4.5-1 / 2 \times a \times 2^{2}$	A1	or $s_{A B}=1 / 2\left(v_{A}+v_{B}\right) \times 2=9-2 a$
	$s_{B C}=2 \times 4.5+1 / 2 \times a \times 2^{2}$	A1	or $S_{B C}=1 / 2\left(v_{B}+v_{C}\right) \times 2=9+2 a$
	$\left[2 \times 4.5-1 / 2 a \times 2^{2}=\frac{4}{5}\left(2 \times 4.5+1 / 2 a \times 2^{2}\right)\right]$	M1	Use the given information to find a valid equation for a
	$a=0.5 \mathrm{~ms}^{-2}$	A1	
	Alternative method for question 4(a)		
	$\left[4.5=u+2 a, s_{A C}=4 u+8 a, s_{A B}=2 u+2 a\right]$	M1	Any two relevant equations in $u, a, s_{A B}$ and $s_{A C}$ where u is the velocity at A
	Two correct equations	A1	
	Three correct equations	A1	
	$\left[2(4.5-2 a)+6 a=\frac{5}{4}\{2(4.5-2 a)+2 a\}\right]$	M1	Use the given information that $B C=5 / 4 A B$ to find a valid equation such as the one shown OE involving a only
	$a=0.5 \mathrm{~ms}^{-2}$	A1	
	Alternative method for question 4(a)		
	[$A C=4.5 \times 4]$	M1	Using $A C=v_{B} \times 4$ since v_{B} is the average velocity over $A C$
	$B C=5 / 9 \times A C$ or $A B=4 / 9 \times A C$	M1	
	$B C=10$ or $A B=8$	A1	
	$[10=4.5 \times 2+2 a$ or $8=4.5 \times 2-2 a]$	M1	Using $s=u t+1 / 2 a t^{2}$ for $B C$ or $s=v t-1 / 2 a t^{2}$ for $A B$
	$a=0.5 \mathrm{~ms}^{-2}$	A1	

Question	Answer	Marks	Guidance
		5	
4(b)	$s_{A B}=2 \times 4.5-1 / 2 \times 0.5 \times 2^{2}=8$ OR $s_{B C}=2 \times 4.5+1 / 2 \times 0.5 \times 2^{2}=10$	M1	Attempt to find the value of $s_{A B}$ or $s_{B C}$ OR attempt to find $s_{A B}$ directly as $s_{A C}=3.5 \times 4+1 / 2 \times a \times 4^{2} \text { or } 1 / 2(4.5-2 a+4.5+2 a) \times 4$ or add the 2 expressions found in $4(\mathbf{a})$ for $s_{A B}$ and $s_{B C}$
	$s_{A C}=8+5 / 4 \times 8=18 \mathrm{~m}$ OR $s_{A C}=10+4 / 5 \times 10=18 \mathrm{~m}$	A1	
		2	

Question	Answer	Mark	Guidance
$5(\mathrm{a})$	$[4 \sin 30+F \sin 60-6=0]$	$\mathbf{M 1}$	Resolve forces vertically and equate to zero
	Correct equation	$\mathbf{A 1}$	
	$F=4.62$	A1	Allow $F=\frac{8}{\sqrt{3}}$ or $F=\frac{8}{3} \sqrt{3}$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(b)	Resolve forces either vertically or horizontally	M1	
	$\begin{aligned} & F \sin \alpha+4 \sin 30-6=0 \\ & \text { and } \\ & F \cos \alpha+3-4 \cos 30=0 \end{aligned}$	A1	Both equations correct $\begin{aligned} & {[F \sin \alpha=4]} \\ & {[F \cos \alpha=0.464102 \ldots]} \end{aligned}$
	$\left[F^{2}=4^{2}+0.464^{2}\right]$ or $\left[F=\frac{4}{\sin 83.4}=\frac{0.464}{\cos 83.4}\right]$	M1	Attempt to solve for F using Pythagoras or from a value found for α
	$\left[\alpha=\tan ^{-1}\left(\frac{4}{0.464}\right)\right]$ or $\left[\alpha=\sin ^{-1}\left(\frac{4}{4.03}\right)=\cos ^{-1}\left(\frac{0.464}{4.03}\right)\right]$	M1	Attempt to solve for α using trigonometry or from a value found for F
	$F=4.03$ and $\alpha=83.4$	A1	Both correct as shown [F=4.0268..., $\alpha=83.382 \ldots]$
		5	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & {[T-200=700 \times-12]} \\ & \text { Car: } \quad-T-600-F=1600 \times-12 \\ & \text { System: }-600-200-F=2300 \times-12 \end{aligned}$	M1	Apply Newton's $2^{\text {nd }}$ law to the trailer or apply Newton's $2^{\text {nd }}$ law to the car and to the system and eliminate the braking force, F.
	Magnitude of $T=8200 \mathrm{~N}$	A1	
		2	
6(b)	Car $\quad[T-F-600=1600 \times-12]$ or System $[-600-200-F=2300 \times-12]$	M1	Apply Newton's second law either to the car or to the system with braking force $=F$ and use of their T from 6(a)
	Braking force $F=26800 \mathrm{~N}$	A1	
		2	
6(c)	$\left[v^{2}=22^{2}+2 \times-12 \times 17.5\right]$	M1	A complete method using constant acceleration equations which would lead to an equation for finding v, using $u=22, s=17.5$ and $a=-12$
	$v=8 \mathrm{~ms}^{-1}$	A1	AG
		2	
6(d)	$[2300 \times 8+m \times 0=2300 \times 2+m \times 5]$	M1	For applying the conservation of momentum equation to the system of car, trailer and van, where $m=$ mass of the van
		A1	Correct equation
	$m=2760 \mathrm{~kg}$	A1	
		3	

Question	Answer	Marks	Guidance
7(a)	$[v=2 t-3]$	M1	For differentiation of s for $0 \leqslant t \leqslant 6$
	$t=1.5$	A1	
		2	
7(b)	Velocity at arrival $=9 \mathrm{~ms}^{-1}$	B1	$t=6$ used in v
	$v=-\frac{24}{t^{2}}-0.5 t$	M1	For differentiation of s for $t \geqslant 6$
	Velocity when leaves $=-3.67 \mathrm{~ms}^{-1}$	A1	Allow $v=-11 / 3$
		3	
7(c)	At $t=0, s=2$ or at $t=6, s=20$	B1	SOI
	At $t=1.5, s=-0.25$	B1	SOI
	At $t=10, s=2.4$	B1	SOI
	[Total distance $=2+0.25+0.25+20+(20-2.4)]$	M1	Evidence of distance rather than displacement involving all three sections, $(0,1.5),(1.5,6)$ and $(6,10)$
	So total distance travelled $=40.1 \mathrm{~m}$	A1	
		5	

