Question	Answer	Marks	Guidance
1(a)	Power = 750000/10 = 75000 W or 75 kW	B1	Power = WD/Time
		1	
1(b)	Driving force $DF = 75000/25$	B1FT	Using $P = DF \times v$
	[DF - 2400 = 16000a]	M1	Using Newton's 2 nd law
	$a = 0.0375 \text{ ms}^{-2}$	A1	Allow $a = \frac{3}{80}$
		3	

9709/42

Cambridge International AS & A Level – Mark Scheme PUBLISHED

March 2020

9709_m20_ms_42

Question	Answer	Marks	Guidance
2(a)	$[1.44 = 0 + \frac{1}{2} \times 2t^2]$	M1	For using a complete method which would lead to an equation for finding a value of <i>t</i> such as $s = ut + \frac{1}{2} at^2$ with $u = 0$, $s = 1.44$ and $a = 2$
	t = 1.2 s	A1	
		2	
2(b)	$R = 0.4g - 3 \times \frac{3}{5} = 0.4g - 3\sin 36.9 \ [= 2.2]$	B1	
	$[3 \times \frac{4}{5} - F = 3\cos 36.9 - F = 0.4 \times 2] [F = 1.6]$	M1	Use Newton's 2^{nd} law, 3 terms, to find <i>F</i> .
	$\left[\mu = \frac{3 \times \frac{4}{5} - 0.4 \times 2}{0.4g - 3 \times \frac{3}{5}} = \frac{1.6}{2.2}\right]$	M1	Use of $\mu = \frac{F}{R}$
	$\mu = 0.727$	A1	Allow $\mu = \frac{8}{11}$
		4	

9709/42

Question	Answer	Marks	Guidance
3(a)	Initial KE = $\frac{1}{2} \times 0.2 \times 5^2$ or Final KE = $\frac{1}{2} \times 0.2 \times 3^2$	B1	
	$\frac{1}{2} \times 0.2 \times 5^2 = 0.2gh + \frac{1}{2} \times 0.2 \times 3^2$	M1	Use conservation of energy
	h = 0.8	A1	
		3	
3(b)	Apply work-energy equation from A to C	M1	
	$\frac{1}{2} \times 0.2 \times 5^2 - 3.1 + 0.2g \times 0.5 = \frac{1}{2} \times 0.2v^2$	A1	Correct work-energy equation
	Speed = 2 ms^{-1}	A1	
		3	

Question	Answer	Marks	Guidance
4(a)	Use the constant acceleration equations to obtain an expression for either s_{AB} or s_{BC} in terms of a	M1	
	$s_{AB} = 2 \times 4.5 - \frac{1}{2} \times a \times 2^2$	A1	or $s_{AB} = \frac{1}{2}(v_A + v_B) \times 2 = 9 - 2a$
	$s_{BC} = 2 \times 4.5 + \frac{1}{2} \times a \times 2^2$	A1	or $s_{BC} = \frac{1}{2}(v_B + v_C) \times 2 = 9 + 2a$
	$[2 \times 4.5 - \frac{1}{2}a \times 2^2 = \frac{4}{5} (2 \times 4.5 + \frac{1}{2}a \times 2^2)]$	M1	Use the given information to find a valid equation for <i>a</i>
	$a = 0.5 \text{ ms}^{-2}$	A1	
	Alternative method for question 4(a)	·	
	$[4.5 = u + 2a, s_{AC} = 4u + 8a, s_{AB} = 2u + 2a]$	M1	Any two relevant equations in u , a , s_{AB} and s_{AC} where u is the velocity at A
	Two correct equations	A1	
	Three correct equations	A1	
	$[2(4.5-2a)+6a=\frac{5}{4} \{2(4.5-2a)+2a\}]$	M1	Use the given information that $BC = \frac{5}{4AB}$ to find a valid equation such as the one shown OE involving <i>a</i> only
	$a = 0.5 \text{ ms}^{-2}$	A1	
	Alternative method for question 4(a)	·	
	$[AC = 4.5 \times 4]$	M1	Using $AC = v_B \times 4$ since v_B is the average velocity over AC
	$BC = 5/9 \times AC$ or $AB = 4/9 \times AC$	M1	
	BC = 10 or AB = 8	A1	
	$[10 = 4.5 \times 2 + 2a \text{ or } 8 = 4.5 \times 2 - 2a]$	M1	Using $s = ut + \frac{1}{2} at^2$ for BC or $s = vt - \frac{1}{2} at^2$ for AB
	$a = 0.5 \text{ ms}^{-2}$	A1	

Question	Answer	Marks	Guidance
		5	
4(b)	$s_{AB} = 2 \times 4.5 - \frac{1}{2} \times 0.5 \times 2^2 = 8$ OR $s_{BC} = 2 \times 4.5 + \frac{1}{2} \times 0.5 \times 2^2 = 10$	M1	Attempt to find the value of s_{AB} or s_{BC} OR attempt to find s_{AB} directly as $s_{AC} = 3.5 \times 4 + \frac{1}{2} \times a \times 4^2$ or $\frac{1}{2} (4.5 - 2a + 4.5 + 2a) \times 4$ or add the 2 expressions found in 4(a) for s_{AB} and s_{BC}
	$s_{AC} = 8 + \frac{5}{4} \times 8 = 18 \text{ m}$ OR $s_{AC} = 10 + \frac{4}{5} \times 10 = 18 \text{ m}$	A1	
		2	

Question	Answer	Mark	Guidance
5(a)	$[4\sin 30 + F\sin 60 - 6 = 0]$	M1	Resolve forces vertically and equate to zero
	Correct equation	A1	
	F = 4.62	A1	Allow $F = \frac{8}{\sqrt{3}}$ or $F = \frac{8}{3}\sqrt{3}$
		3	

Question	Answer	Marks	Guidance
5(b)	Resolve forces either vertically or horizontally	M1	
	$F \sin \alpha + 4 \sin 30 - 6 = 0$ and $F \cos \alpha + 3 - 4 \cos 30 = 0$	A1	Both equations correct $[F \sin \alpha = 4]$ $[F \cos \alpha = 0.464102]$
	$\begin{bmatrix} F^2 = 4^2 + 0.464^2 \end{bmatrix}$ or $\begin{bmatrix} F = \frac{4}{\sin 83.4} = \frac{0.464}{\cos 83.4} \end{bmatrix}$	M1	Attempt to solve for F using Pythagoras or from a value found for α
	$\begin{bmatrix} \alpha = \tan^{-1}\left(\frac{4}{0.464}\right) \end{bmatrix}$ or $\begin{bmatrix} \alpha = \sin^{-1}\left(\frac{4}{4.03}\right) = \cos^{-1}\left(\frac{0.464}{4.03}\right) \end{bmatrix}$	M1	Attempt to solve for α using trigonometry or from a value found for F
	$F = 4.03$ and $\alpha = 83.4$	A1	Both correct as shown $[F = 4.0268, \alpha = 83.382]$
		5	

9709 m20 ms	42
-------------	----

Question	Answer	Marks	Guidance
6(a)	$\begin{bmatrix} T - 200 = 700 \times -12 \end{bmatrix}$ Car: $-T - 600 - F = 1600 \times -12$ System: $-600 - 200 - F = 2300 \times -12$	M1	Apply Newton's 2^{nd} law to the trailer or apply Newton's 2^{nd} law to the car and to the system and eliminate the braking force, <i>F</i> .
	Magnitude of $T = 8200$ N	A1	
		2	
6(b)	Car $[T - F - 600 = 1600 \times -12]$ or System $[-600 - 200 - F = 2300 \times -12]$	M1	Apply Newton's second law either to the car or to the system with braking force = F and use of <i>their</i> T from 6(a)
	Braking force $F = 26800$ N	A1	
		2	
6(c)	$[v^2 = 22^2 + 2 \times -12 \times 17.5]$	M1	A complete method using constant acceleration equations which would lead to an equation for finding <i>v</i> , using $u = 22$, $s = 17.5$ and $a = -12$
	$v = 8 \text{ ms}^{-1}$	A1	AG
		2	
6(d)	$[2300 \times 8 + m \times 0 = 2300 \times 2 + m \times 5]$	M1	For applying the conservation of momentum equation to the system of car, trailer and van, where $m = mass$ of the van
		A1	Correct equation
	m = 2760 kg	A1	
		3	

<u>9709_m20_ms_</u>42

Question	Answer	Marks	Guidance
7(a)	[v = 2t - 3]	M1	For differentiation of <i>s</i> for $0 \le t \le 6$
	t = 1.5	A1	
		2	
7(b)	Velocity at arrival = 9 ms^{-1}	B1	t = 6 used in v
	$v = -\frac{24}{t^2} - 0.5t$	M1	For differentiation of <i>s</i> for $t \ge 6$
	Velocity when leaves = -3.67 ms^{-1}	A1	Allow $v = -11/3$
		3	
7(c)	At $t = 0$, $s = 2$ or at $t = 6$, $s = 20$	B1	SOI
	At $t = 1.5$, $s = -0.25$	B1	SOI
	At $t = 10, s = 2.4$	B1	SOI
	[Total distance = $2 + 0.25 + 0.25 + 20 + (20 - 2.4)$]	M1	Evidence of distance rather than displacement involving all three sections, $(0, 1.5)$, $(1.5, 6)$ and $(6, 10)$
	So total distance travelled = 40.1 m	A1	
		5	