March 2020

9	7	0	9	m2(0	ms	32
---	---	---	---	-----	---	----	----

Question	Answer	Marks	Guidance		
1(a)	Make a recognisable sketch graph of $y = x-2 $	B1			
		1			
1(b)	Find <i>x</i> -coordinate of intersection with $y = 3x - 4$	M1			
	Obtain $x = \frac{3}{2}$	A1			
	State final answer $x > \frac{3}{2}$ only	A1			
	Alternative method for question 1(b)				
	Solve the linear inequality $3x-4>2-x$, or corresponding equation	M1			
	Obtain critical value $x = \frac{3}{2}$	A1			
	State final answer $x > \frac{3}{2}$ only	A1			
	Alternative method for question 1(b)				
	Solve the quadratic inequality $(x-2)^2 < (3x-4)^2$, or corresponding equation	M1			
	Obtain critical value $x = \frac{3}{2}$	A1			
	State final answer $x > \frac{3}{2}$ only	A1			
		3			

Question	Answer	Marks	Guidance
2	Use law of logarithm of a power and sum and remove logarithms	M1	
	Obtain a correct equation in any form, e.g. $3(2x+5) = (x+2)^2$	A1	
	Use correct method to solve a 3-term quadratic, obtaining at least one root	M1	
	Obtain final answer $x = 1 + 2\sqrt{3}$ or $1 + \sqrt{12}$ only	A1	
		4	

Question	Answer	Marks	Guidance
3(a)	Sketch the graph $y = \sec x$	M1	
	Sketch the graph $y = 2 - \frac{1}{2}x$, and justify the given statement	A1	
		2	
3(b)	Calculate the values of a relevant expression or pair of expressions at $x = 0.8$ and $x = 1$	M1	
	Complete the argument correctly with correct calculated values	A1	
		2	
3(c)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 0.88	A1	
	Show sufficient iterations to 4 d.p. to justify 0.88 to 2 d.p., or show there is a sign change in the interval (0.875, 0.885)	A1	
		3	

Question	Answer	Marks	Guidance
4	Integrate by parts and reach $ax \tan x + b \int \tan x dx$	M1*	
	Obtain $x \tan x - \int \tan x dx$	A1	
	Complete the integration, obtaining a term $\pm \ln \cos x$, or equivalent	M1	
	Obtain integral $x \tan x + \ln \cos x$, or equivalent	A1	
	Substitute limits correctly, having integrated twice	DM1	
	Use a law of logarithms	M1	
	Obtain answer $\frac{5}{18}\sqrt{3\pi} - \frac{1}{2}\ln 3$, or exact simplified equivalent	A1	
		7	

Question	Answer	Marks	Guidance
5(a)	Express LHS correctly as a single fraction	B1	
	Use $\cos(A \pm B)$ formula to simplify the numerator	M1	
	Use sin 2 <i>A</i> formula to simplify the denominator	M1	
	Obtain the given result.	A1	
		4	

Question	Answer	Marks	Guidance
5(b)	Obtain an equation in $\tan 2x$ and use correct method to solve for x	M1	
	Obtain answer, e.g. 0.232	A1	
	Obtain second answer, e.g. 1.80	A1	Ignore answers outside the given interval.
		3	

Question	Answer	Marks	Guidance
6(a)	Separate variables correctly and attempt integration of at least one side	B1	
	Obtain term of the form $a \tan^{-1}(2y)$	M1	
	Obtain term $\frac{1}{2}$ tan ⁻¹ (2y)	A1	
	Obtain term $-e^{-x}$	B1	
	Use $x = 1$, $y = 0$ to evaluate a constant or as limits in a solution containing terms of the form $a \tan^{-1}(by)$ and $ce^{\pm x}$	M1	
	Obtain correct answer in any form	A1	
	Obtain final answer $y = \frac{1}{2} \tan(2e^{-1} - 2e^{-x})$, or equivalent	A1	
		7	

9709/32

Question	Answer	Marks	Guidance
6(b)	State that y approaches $\frac{1}{2} \tan(2e^{-1})$, or equivalent	B1FT	The FT is on correct work on a solution containing e^{-x} .
		1	

Question	Answer	Marks	Guidance
7(a)	State or imply $3y^2 + 6xy \frac{dy}{dx}$ as derivative of $3xy^2$	B1	
	State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1	
	Equate attempted derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	Need to see $\frac{dy}{dx}$ factorised out prior to AG
	Obtain the given answer correctly	A1	AG
		4	
7(b)	Equate denominator to zero	*M1	
	Obtain $y = 2x$, or equivalent	A1	
	Obtain an equation in x or y	DM1	
	Obtain the point (1, 2)	A1	
	State the point $(\sqrt[3]{5}, 0)$	B1	Alternatively (1.71, 0).
		5	

9709/32

Cambridge International A Level – Mark Scheme PUBLISHED

March 2020

Question	Answer	Marks	Guidance
8(a)	Obtain $\overrightarrow{OM} = 2\mathbf{i} + \mathbf{j}$	B1	
	Use a correct method to find \overrightarrow{MN}	M1	
	Obtain $\overline{MN} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$	A1	
		3	
8(b)	Use a correct method to form an equation for <i>MN</i>	M1	
	Obtain $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + \lambda(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$, or equivalent	A1	
		2	
8(c)	Find \overrightarrow{DP} for a point <i>P</i> on <i>MN</i> with parameter λ , e.g. $(2 - \lambda, 1 + 2\lambda, -2 + 2\lambda)$	B1	
	Equate scalar product of \overrightarrow{DP} and a direction vector for <i>MN</i> to zero and solve for λ	M1	
	Obtain $\lambda = \frac{4}{9}$	A1	
	State that the position vector of <i>P</i> is $\frac{14}{9}\mathbf{i} + \frac{17}{9}\mathbf{j} + \frac{8}{9}\mathbf{k}$	A1	
		4	

9709/32

Cambridge International A Level – Mark Scheme PUBLISHED

March 2020

Question	Answer	Marks	Guidance
9(a)	State or imply the form $\frac{A}{1+2x} + \frac{B}{1-2x} + \frac{C}{2+x}$	B1	
	Use a correct method for finding a constant	M1	
	Obtain one of $A = -2$, $B = 1$ and $C = 4$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
9(b)	Use correct method to find the first two terms of the expansion of $(1+2x)^{-1}$, $(1-2x)^{-1}$, $(2+x)^{-1}$ or $(1+\frac{1}{2}x)^{-1}$	M1	
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A1FT + A1FT + A1FT	The FT is on <i>A</i> , <i>B</i> and <i>C</i> .
	Obtain final answer $1 + 5x - \frac{7}{2}x^2$	A1	
		5	

PUBLISHED			9709_m20_ms_32
Question	Answer	Marks	Guidance
10(a)	Solve for <i>v</i> or <i>w</i>	M1	
	Use $i^2 = -1$	M1	
	Obtain $v = -\frac{2i}{1+i}$ or $w = \frac{5+7i}{-1+i}$	A1	
	Multiply numerator and denominator by the conjugate of the denominator	M1	
	Obtain $v = -1 - i$	A1	
	Obtain $w = 1 - 6i$	A1	
		6	
10(b)(i)	Show a circle with centre $2 + 3i$	B1	
	Show a circle with radius 1 and centre not at the origin	B1	
		2	
10(b)(ii)	Carry out a complete method for finding the least value of $\arg z$	M1	
	Obtain answer 40.2° or 0.702 radians	A1	
		2	