Question	Answer	Marks	Guidance
1(a)	Make a recognisable sketch graph of $y=\|x-2\|$	B1	
		1	
1(b)	Find x-coordinate of intersection with $y=3 x-4$	M1	
	Obtain $x=\frac{3}{2}$	A1	
	State final answer $x>\frac{3}{2}$ only	A1	
	Alternative method for question 1(b)		
	Solve the linear inequality $3 x-4>2-x$, or corresponding equation	M1	
	Obtain critical value $x=\frac{3}{2}$	A1	
	State final answer $x>\frac{3}{2}$ only	A1	
	Alternative method for question 1(b)		
	Solve the quadratic inequality $(x-2)^{2}<(3 x-4)^{2}$, or corresponding equation	M1	
	Obtain critical value $x=\frac{3}{2}$	A1	
	State final answer $x>\frac{3}{2}$ only	A1	
		3	

Question	Answer	Marks	Guidance
2	Use law of logarithm of a power and sum and remove logarithms	M1	
	Obtain a correct equation in any form, e.g. $3(2 x+5)=(x+2)^{2}$	A1	
	Use correct method to solve a 3-term quadratic, obtaining at least one root	M1	
	Obtain final answer $x=1+2 \sqrt{3}$ or $1+\sqrt{12}$ only	A1	

Question	Answer	Marks	Guidance
3(a)	Sketch the graph $y=\sec x$	M1	
	Sketch the graph $y=2-\frac{1}{2} x$, and justify the given statement	A1	
		2	
3(b)	Calculate the values of a relevant expression or pair of expressions at $x=0.8$ and $x=1$	M1	
	Complete the argument correctly with correct calculated values	A1	
		2	
3(c)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 0.88	A1	
	Show sufficient iterations to $4 \mathrm{~d} . \mathrm{p}$. to justify 0.88 to $2 \mathrm{~d} . \mathrm{p}$., or show there is a sign change in the interval $(0.875,0.885)$	A1	
		3	

Question	Answer	Marks	Guidance
4	Integrate by parts and reach $a x \tan x+b \int \tan x \mathrm{~d} x$	M1*	
	Obtain $x \tan x-\int \tan x \mathrm{~d} x$	A1	
	Complete the integration, obtaining a term $\pm \ln \cos x$, or equivalent	M1	
	Obtain integral $x \tan x+\ln \cos x$, or equivalent	A1	
	Substitute limits correctly, having integrated twice	DM1	
	Use a law of logarithms	M1	
	Obtain answer $\frac{5}{18} \sqrt{3} \pi-\frac{1}{2} \ln 3$, or exact simplified equivalent	A1	
		7	

Question	Answer	Marks	Guidance
$5(\mathrm{a})$	Express LHS correctly as a single fraction	B1	
	Use $\cos (A \pm B)$ formula to simplify the numerator	M1	
	Use $\sin 2 A$ formula to simplify the denominator	M1	
	Obtain the given result.	A1	
		$\mathbf{4}$	

Question	Answer	Marks	
	Obtain an equation in $\tan 2 x$ and use correct method to solve for x	M1	
	Obtain answer, e.g. 0.232	$\mathbf{A 1}$	
	Obtain second answer, e.g. 1.80	A1	Ignore answers outside the given interval.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(a)	Separate variables correctly and attempt integration of at least one side	B1	
	Obtain term of the form $a \tan ^{-1}(2 y)$	M1	
	Obtain term $\frac{1}{2} \tan ^{-1}(2 y)$	A1	
	Obtain term $-\mathrm{e}^{-x}$	B1	
	Use $x=1, y=0$ to evaluate a constant or as limits in a solution containing terms of the form $a \tan ^{-1}(b y)$ and $c \mathrm{e}^{ \pm x}$	M1	
	Obtain correct answer in any form	A1	
	Obtain final answer $y=\frac{1}{2} \tan \left(2 \mathrm{e}^{-1}-2 \mathrm{e}^{-x}\right)$, or equivalent	A1	
		7	

Question	Answer	Marks	Guidance
$6(\mathrm{~b})$	State that y approaches $\frac{1}{2} \tan \left(2 \mathrm{e}^{-1}\right)$, or equivalent	B1FT	The FT is on correct work on a solution containing e^{-x}.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(a)	State or imply $3 y^{2}+6 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $3 x y^{2}$	B1	
	State or imply $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{3}	B1	
	Equate attempted derivative of LHS to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	Need to see $\frac{\mathrm{d} y}{\mathrm{~d} x}$ factorised out prior to AG
	Obtain the given answer correctly	A1	AG
		4	
7(b)	Equate denominator to zero	*M1	
	Obtain $y=2 x$, or equivalent	A1	
	Obtain an equation in x or y	DM1	
	Obtain the point (1,2)	A1	
	State the point $(\sqrt[3]{5}, 0)$	B1	Alternatively (1.71, 0).
		5	

Question	Answer	Marks	Guidance
8(a)	Obtain $\overrightarrow{O M}=2 \mathbf{i}+\mathbf{j}$	B1	
	Use a correct method to find $\overrightarrow{M N}$	M1	
	Obtain $\overrightarrow{M N}=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$	A1	
		3	
8(b)	Use a correct method to form an equation for $M N$	M1	
	Obtain $\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\lambda(-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k})$, or equivalent	A1	
		2	
8(c)	Find $\overrightarrow{D P}$ for a point P on $M N$ with parameter λ, e.g. $(2-\lambda, 1+2 \lambda,-2+2 \lambda)$	B1	
	Equate scalar product of $\overrightarrow{D P}$ and a direction vector for $M N$ to zero and solve for λ	M1	
	Obtain $\lambda=\frac{4}{9}$	A1	
	State that the position vector of P is $\frac{14}{9} \mathbf{i}+\frac{17}{9} \mathbf{j}+\frac{8}{9} \mathbf{k}$	A1	
		4	

Question	Answer	Marks	Guidance
9(a)	State or imply the form $\frac{A}{1+2 x}+\frac{B}{1-2 x}+\frac{C}{2+x}$	B1	
	Use a correct method for finding a constant	M1	
	Obtain one of $A=-2, B=1$ and $C=4$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
9(b)	Use correct method to find the first two terms of the expansion of $(1+2 x)^{-1}$, $(1-2 x)^{-1},(2+x)^{-1} \text { or }\left(1+\frac{1}{2} x\right)^{-1}$	M1	
	Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction	$\begin{array}{r} \text { A1FT } \\ + \text { A1FT } \\ + \text { A1FT } \end{array}$	The FT is on A, B and C.
	Obtain final answer $1+5 x-\frac{7}{2} x^{2}$	A1	
		5	

Question	Answer	Marks	Guidance
10(a)	Solve for v or w	M1	
	Use $\mathrm{i}^{2}=-1$	M1	
	Obtain $v=-\frac{2 \mathrm{i}}{1+\mathrm{i}}$ or $w=\frac{5+7 \mathrm{i}}{-1+\mathrm{i}}$	A1	
	Multiply numerator and denominator by the conjugate of the denominator	M1	
	Obtain $v=-1-\mathrm{i}$	A1	
	Obtain $w=1-6 \mathrm{i}$	A1	
		6	
10(b)(i)	Show a circle with centre $2+3 \mathrm{i}$	B1	
	Show a circle with radius 1 and centre not at the origin	B1	
		2	
10(b)(ii)	Carry out a complete method for finding the least value of $\arg z$	M1	
	Obtain answer 40.2° or 0.702 radians	A1	
		2	

