1	Question	Answer	Marks
	Express first term as $2 \sin \theta \cos 30+2 \cos \theta \sin 30$	$\mathbf{B 1}$	
	Divide by $\cos \theta$ to produce linear equation in $\tan \theta$	$\mathbf{M 1}$	
	Obtain $\tan \theta=\frac{6}{2-\sqrt{3}}$ or $22.39 \ldots$	A1	
	Obtain 87.4	$\mathbf{A 1}$	Or greater accuracy $87.44297 \ldots$
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$2(\mathrm{a})$	Carry out division as far as $4 x+k$	$\mathbf{M 1}$	
	Obtain quotient $4 x-3$	$\mathbf{A 1}$	
	Confirm remainder is 18	$\mathbf{A 1}$	AG necessary detail needed
		$\mathbf{3}$	
	State or imply equation is $(4 x-3)\left(x^{2}+5 x+6\right)=0$	B1FT	Following their quotient from part (a)
	Attempt solution of cubic equation to find three real roots	$\mathbf{M 1}$	
	Obtain $-3,-2, \frac{3}{4}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3	Integrate to obtain $k \ln (2 x-5)$	$* \mathbf{M 1}$	For non-zero constant k
	Apply limits to obtain $\ln (6 a-5)-\ln (2 a-5)=\ln \frac{7}{2}$	A1	
	Apply subtraction law for logarithms	$* \mathbf{M 1}$	OE
	Obtain equation $\frac{6 a-5}{2 a-5}=\frac{7}{2}$	A1	OE without logarithms
	Solve equation for a	DM1	
	Obtain $a=\frac{25}{2}$	$\mathbf{6}$	

Question	Answer	Marks	Guidance
4	Differentiate $-y^{2}$ to obtain $-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1	
	Differentiate $-4 \ln (2 y+3)$ to obtain $\frac{-8}{2 y+3} \frac{\mathrm{~d} y}{\mathrm{~d} x}$	B1	
	Attempt differentiation of all terms	M1	Dependent on appearance of at least one $\frac{d y}{d x}$
	Substitute $x=3, y=-1$ to find numerical value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$	A1	
	Obtain equation $y=3 x-10$	A1	OE
		6	

Question	Answer	Marks	Guidance
5(a)	Draw two V-shaped graphs with one vertex on negative x-axis and one vertex on positive x-axis	M1	
	Draw correct graphs related correctly to each other	A1	
	State correct coordinates $-2 k, 2 k, \frac{3}{2} k, 3 k$	A1	Either given on axes or stated separately
		3	
5(b)	State or imply non-modulus equation $(x+2 k)^{2}=(2 x-3 k)^{2}$ or pair of linear equations	B1	
	Attempt solution of 3-term quadratic equation or pair of linear equations	M1	
	Obtain $x=\frac{1}{3} k, \quad x=5 k$	A1	
	Obtain $y=\frac{7}{3} k, \quad y=7 k$	A1	If A0A0, award A1 for one pair of correct coordinates
		4	
5(c)	Relate 2^{t} to larger value of x from part (b)	M1	
	Apply logarithms to obtain $t=\frac{\ln (5 k)}{\ln 2}$	A1	OE such as $\frac{\log _{10}(5 k)}{\log _{10} 2}$ or $\log _{2}(5 k)$
		2	

Question	Answer	Marks	Guidance	
6(a)	Differentiate using the product rule	*M1		
	Obtain $3 x^{2} \mathrm{e}^{0.2 x}+0.2 x^{3} \mathrm{e}^{0.2 x}$	A1	OE	
	Equate first derivative to 15 and rearrange to $x=\ldots$	DM1		
	Confirm $x=\sqrt{\frac{75 \mathrm{e}^{-0.2 x}}{15+x}}$	A1	AG - necessary detail needed	
		4		
6(b)	Consider sign of $x-\sqrt{\frac{75 \mathrm{e}^{-0.2 x}}{15+x}}$ or equivalent for 1.7 and 1.8	M1		
	Obtain $-0.08 \ldots$ and $0.03 \ldots$ or equivalents and justify conclusion	A1		
		2		
6(c)	Use iterative process correctly at least once	M1	Answer required to exactly 4 sf	
	Obtain final answer 1.771	A1		
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval $[1.7705,1.7715]$	A1		
		3		

