Question	Answer	Marks	Guidance
1	$f'(x) = \left[-(3x+2)^{-2}\right] \times [3] + [2x]$	B2 , 1, 0	
	< 0 hence decreasing	B1	Dependent on at least B1 for $f'(x)$ and must include < 0 or '(always) neg'
		3	

Question	Answer	Marks	Guidance
2	[Stretch] [factor 2, x direction (or y-axis invariant)]	*B1 DB1	
	[Translation or Shift] [1 unit in y direction] or [Translation/Shift] $\begin{bmatrix} 0\\1 \end{bmatrix}$	B1B1	Accept transformations in either order. Allow (0, 1) for the vector
		4	

Question	Answer	Marks	Guidance
3	$(\pi) \int (y-1) \mathrm{d}y$	*M1	SOI Attempt to integrate x^2 or $(y-1)$
	$(\pi)\left[\frac{y^2}{2}-y\right]$	A1	
	$(\pi)\left[\left(\frac{25}{2}-5\right)-\left(\frac{1}{2}-1\right)\right]$	DM1	Apply limits $1 \rightarrow 5$ to an integrated expression
	8π or AWRT 25.1	A1	
		4	

Question	Answer	Marks	Guidance
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{6}$	B1	OE, SOI
	$their(2x-2) = their\frac{4}{6}$	M1	LHS and RHS must be <i>their</i> $\frac{dy}{dx}$ expression and value
	$x = \frac{4}{3}$ oe	A1	
		4	

Question	Answer	Marks	Guidance
5	$2\tan\theta - 6\sin\theta + 2 = \tan\theta + 3\sin\theta + 2 \rightarrow \tan\theta - 9\sin\theta \ (=0)$	M1	Multiply by denominator and simplify
	$\sin\theta - 9\sin\theta\cos\theta \ (=0)$	M1	Multiply by $\cos \theta$
	$\sin\theta(1-9\cos\theta) (=0) \rightarrow \sin\theta=0, \cos\theta=\frac{1}{9}$	M1	Factorise and attempt to solve at least one of the factors $= 0$
	$\theta = 0$ or 83.6° (only answers in the given range)	A1A1	
		5	

Question	Answer	Marks	Guidance
6(a)	$5C2\left[2(x)\right]^{3}\left[\frac{a}{\left(x^{2}\right)}\right]^{2}$	B1	SOI Can include correct <i>x</i> 's
	$10 \times 8 \times a^2 \left(\frac{x^3}{x^4}\right) = 720 \left(\frac{1}{x}\right)$	B1	SOI Can include correct <i>x</i> 's
	$a = \pm 3$	B1	
		3	
6(b)	$5C4\left[2(x)\right]\left[\frac{theira}{\left(x^2\right)}\right]^4$	B1	SOI <i>Their a</i> can be just <u>one</u> of their values (e.g. just 3). Can gain mark from within an expansion but must use <i>their</i> value of a
	810 identified	B1	Allow with x^{-7}
		2	

9709/12

970	9	m2	0	ms	12

Question	Answer	Marks	Guidance
7	$OC = 6\cos 0.8 = 4.18(0)$	M1A1	SOI
	Area sector $OCD = \frac{1}{2} (their 4.18)^2 \times 0.8$	*M1	OE
	$\Delta OCA = \frac{1}{2} \times 6 \times their 4.18 \times \sin 0.8$	M1	OE
	Required area = <i>their</i> $\triangle OCA$ – <i>their</i> sector <i>OCD</i>	DM1	SOI. If not seen <i>their</i> areas of sector and triangle must be seen
	2.01	A1	CWO. Allow or better e.g. 2.0064
		6	

Question	Answer	Marks	Guidance
8(a)	2%	B1	
		1	
8(b)	Bonus = $600 + 23 \times 100 = 2900$	B1	
	Salary = 30000×1.03^{23}	M1	Allow 30000×1.03 ²⁴ (60984)
	= 59207.60	A1	Allow answers of 3significant figure accuracy or better
	<i>their</i> 2900 <i>their</i> 59200	M1	SOI
	4.9(0)%	A1	
		5	

	TOBLISHED			
Question	Answer	Marks	Guidance	
9(a)	$\left[2(x+3)^2\right]\left[-7\right]$	B1B1	Stating $a = 3, b = -7$ gets B1B1	
		2		
9(b)	$y = 2(x+3)^2 - 7 \rightarrow 2(x+3)^2 = y+7 \rightarrow (x+3)^2 = \frac{y+7}{2}$	M1	First 2 operations correct. Condone sign error or with x/y interchange	
	$x+3=(\pm)\sqrt{\frac{y+7}{2}} \rightarrow x=(\pm)\sqrt{\frac{y+7}{2}}-3 \rightarrow f^{-1}(x)=-\sqrt{\frac{x+7}{2}}-3$	A1FT	FT on <i>their a</i> and <i>b</i> . Allow $y = \dots$	
	Domain: $x \ge -5$ or ≥ -5 or $[-5, \infty)$	B1	Do not accept $y =, f(x) =, f^{-1}(x) =$	
		3		
9(c)	$fg(x) = 8x^2 - 7$	B1FT	SOI. FT on <i>their</i> –7 from part (a)	
	$8x^2 - 7 = 193 \rightarrow x^2 = 25 \rightarrow x = -5$ only	B1		
	Alternative method for question 9(c)			
	$g(x) = f^{-1}(193) \rightarrow 2x - 3 = -\sqrt{100} - 3$	M1	FT on <i>their</i> $f^{-1}(x)$	
	x = -5 only	A1		
		2		
9(d)	(Largest k is) $-\frac{1}{2}$	B1	Accept $-\frac{1}{2}$ or $k \leq -\frac{1}{2}$	
		1		

	<u>10DEISHED</u> 9709_m20_				
Question	Answer	Marks	Guidance		
10(a)	$2(a+3)^{\frac{1}{2}} - a = 0$	M1	SOI. Set $\frac{dy}{dx} = 0$ when $x = a$. Can be implied by an answer in terms of a		
	$4(a+3) = a^2 \to a^2 - 4a - 12 = 0$	M1	Take <i>a</i> to RHS and square. Form 3-term quadratic		
	$(a-6)(a+2) \rightarrow a = 6$	A1	Must show factors, or formula or completing square. Ignore $a = -2$ SC If <i>a</i> is never used maximum of M1A1 for $x = 6$, with visible solution		
		3			
10(b)	$\frac{d^2 y}{dx^2} = (x+3)^{-\frac{1}{2}} - 1$	B1			
	Sub their $a \to \frac{d^2 y}{dx^2} = \frac{1}{3} - 1 = -\frac{2}{3} (or < 0) \to MAX$	M1A1	A mark only if completely correct If the second differential is not $-\frac{2}{3}$ correct conclusion must be drawn to award the M1		
		3			
10(c)	$(y=)\frac{2(x+3)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{1}{2}x^{2} (+c)$	B1B1			
	Sub $x = their \ a \text{ and } y = 14 \rightarrow 14 = \frac{4}{3}(9)^{\frac{3}{2}} - 18 + c$	M1	Substitute into an integrated expression. c must be present. Expect $c = -4$		
	$y = \frac{4}{3}(x+3)^{\frac{3}{2}} - \frac{1}{2}x^2 - 4$	A1	Allow $f(x) = \dots$		
		4			

9709/12

Cambridge International AS & A Level – Mark Scheme PUBLISHED

March 2020

9709_m20_ms_12

Question	Answer	Marks	Guidance
11(a)	$(\tan x - 2)(3\tan x + 1) (= 0)$. or formula or completing square	M1	Allow reversal of signs in the factors. Must see a method
	$\tan x = 2 \text{ or } -\frac{1}{3}$	A1	
	$x = 63.4^{\circ}$ (only value in range) or 161.6° (only value in range)	B1FT B1FT	
		4	
11(b)	Apply $b^2 - 4ac < 0$	M1	SOI. Expect $25-4(3)(k) < 0$, tan x must not be in coefficients
	$k > \frac{25}{12}$	A1	Allow $b^2 - 4ac = 0$ leading to correct $k > \frac{25}{12}$ for M1A1
		2	
11(c)	k = 0	M1	SOI
	$\tan x = 0 \text{ or } \frac{5}{3}$	A1	
	$x = 0^{\circ} \text{ or } 180^{\circ} \text{ or } 59.0^{\circ}$	A1	All three required
		3	

9709/12

Question	Answer	Marks	Guidance
12(a)	Centre = $(2, -1)$	B1	
	$r^{2} = [2 - (-3)]^{2} + [-1 - (-5)]^{2}$ or $[2 - 7]^{2} + [-1 - 3]^{2}$ OE	M1	OR $\frac{1}{2} \left[\left(-3 - 7 \right)^2 + \left(-5 - 3 \right)^2 \right]$ OE
	$(x-2)^{2} + (y+1)^{2} = 41$	A1	Must not involve surd form SCB3 $(x+3)(x-7)+(y+5)(y-3)=0$
		3	
12(b)	Centre = <i>their</i> $(2, -1) + \binom{8}{4} = (10, 3)$	B1FT	SOI FT on <i>their</i> (2, -1)
	$(x-10)^{2} + (y-3)^{2} = their 41$	B1FT	FT on <i>their</i> 41 even if in surd form SCB2 $(x-5)(x-15)+(y+1)(y-7)=0$
		2	

9709_	_m20	_ms	_12

Question	Answer	Marks	Guidance
12(c)	Gradient <i>m</i> of line joining centres = $\frac{4}{8}$ OE	B1	
	Attempt to find mid-point of line.	M1	Expect (6, 1)
	Equation of RS is $y-1 = -2(x-6)$	M1	Through <i>their</i> (6, 1) with gradient $\frac{-1}{m}$
	y = -2x + 13	A1	AG
	Alternative method for question 12(c)		
	$(x-2)^{2} + (y+1)^{2} - 41 = (x-10)^{2} + (y-3)^{2} - 41 \text{ OE}$	M1	
	$x^{2} - 4x + 4 + y^{2} + 2y + 1 = x^{2} - 20x + 100 + y^{2} - 6y + 9$ OE	A1	Condone 1 error or errors caused by 1 error in the first line
	16x + 8y = 104	A1	
	y = -2x + 13	A1	AG
		4	
12(d)	$(x-10)^{2} + (-2x+13-3)^{2} = 41$	M1	Or eliminate y between C ₁ and C ₂
	$x^{2} - 20x + 100 + 4x^{2} - 40x + 100 = 41 \rightarrow 5x^{2} - 60x + 159 = 0$	A1	AG
		2	