| Question | Answer | Marks | Guidance |
| :---: | :--- | :--- | :--- |
| 1 | $\mathrm{f}^{\prime}(x)=\left[-(3 x+2)^{-2}\right] \times[3]+[2 x]$ | $\mathbf{B 2 , 1 , 0}$ |  |
|  | $<0$ hence decreasing | $\mathbf{B 1}$ | Dependent on at least B1 for $\mathrm{f}^{\prime}(x)$ and must include $<0$ or <br> '(always) neg' |
|  |  | $\mathbf{3}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 2 | [Stretch] [factor 2, x direction (or $y$-axis invariant)] | $\begin{gathered} \text { *B1 } \\ \text { DB1 } \end{gathered}$ |  |
|  | [Translation or Shift] [1 unit in $y$ direction] or [Translation/Shift] $\left[\binom{0}{1}\right]$ | B1B1 | Accept transformations in either order. Allow (0, 1) for the vector |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | :--- |
| 3 | $(\pi) \int(y-1) \mathrm{d} y$ | $* \mathbf{M 1}$ | SOI <br> Attempt to integrate $x^{2}$ or $(y-1)$ |
|  | $(\pi)\left[\frac{y^{2}}{2}-y\right]$ | DM1 | Apply limits $1 \rightarrow 5$ to an integrated expression |
|  | $(\pi)\left[\left(\frac{25}{2}-5\right)-\left(\frac{1}{2}-1\right)\right]$ | $\mathbf{A 1}$ |  |
|  | $8 \pi$ or AWRT 25.1 | $\mathbf{4}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | ---: |
| 4 | $\frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x-2$ | B1 |  |
|  | $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{6}$ | B1 | OE, SOI |
|  | their $(2 x-2)=$ their $\frac{4}{6}$ | M1 | LHS and RHS must be their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ expression and value |
|  | $x=\frac{4}{3}$ oe | A1 |  |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | :--- | :--- |
| 5 | $2 \tan \theta-6 \sin \theta+2=\tan \theta+3 \sin \theta+2 \rightarrow \tan \theta-9 \sin \theta(=0)$ | M1 | Multiply by denominator and simplify |
|  | $\sin \theta-9 \sin \theta \cos \theta(=0)$ | $\mathbf{M 1}$ | Multiply by $\cos \theta$ |
|  | $\sin \theta(1-9 \cos \theta)(=0) \rightarrow \sin \theta=0, \cos \theta=\frac{1}{9}$ | M1 | Factorise and attempt to solve at least one of the factors $=0$ |
|  | $\theta=0$ or $83.6^{\circ}$ (only answers in the given range) | $\mathbf{A 1 A 1}$ |  |
|  |  | $\mathbf{5}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6(a) | $5 \mathrm{C} 2[2(x)]^{3}\left[\frac{a}{\left(x^{2}\right)}\right]^{2}$ | B1 | SOI <br> Can include correct $x$ 's |
|  | $10 \times 8 \times a^{2}\left(\frac{x^{3}}{x^{4}}\right)=720\left(\frac{1}{x}\right)$ | B1 | SOI <br> Can include correct $x$ 's |
|  | $a= \pm 3$ | B1 |  |
|  |  | 3 |  |
| 6(b) | $5 \mathrm{C} 4[2(x)]\left[\frac{\text { their } a}{\left(x^{2}\right)}\right]^{4}$ | B1 | SOI <br> Their $a$ can be just one of their values (e.g. just 3). <br> Can gain mark from within an expansion but must use their value of $a$ |
|  | 810 identified | B1 | Allow with $x^{-7}$ |
|  |  | 2 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 7 | $O C=6 \cos 0.8=4.18(0)$ | M1A1 | SOI |
|  | Area sector $O C D=\frac{1}{2}(\text { their } 4.18)^{2} \times 0.8$ | *M1 | OE |
|  | $\Delta O C A=\frac{1}{2} \times 6 \times$ their $4.18 \times \sin 0.8$ | M1 | OE |
|  | Required area $=$ their $\triangle O C A-$ their sector $O C D$ | DM1 | SOI. If not seen their areas of sector and triangle must be seen |
|  | 2.01 | A1 | CWO. Allow or better e.g. 2.0064 |
|  |  | 6 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 8(a) | 2\% | B1 |  |
|  |  | 1 |  |
| 8(b) | Bonus $=600+23 \times 100=2900$ | B1 |  |
|  | Salary $=30000 \times 1.03^{23}$ | M1 | Allow $30000 \times 1.03^{24}$ (60984) |
|  | $=59207.60$ | A1 | Allow answers of 3significant figure accuracy or better |
|  | $\frac{\text { their } 2900}{\text { their } 59200}$ | M1 | SOI |
|  | 4.9(0)\% | A1 |  |
|  |  | 5 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 9(a) | $\left[2(x+3)^{2}\right][-7]$ | B1B1 | Stating $a=3, b=-7$ gets B1B1 |
|  |  | 2 |  |
| 9(b) | $y=2(x+3)^{2}-7 \rightarrow 2(x+3)^{2}=y+7 \rightarrow(x+3)^{2}=\frac{y+7}{2}$ | M1 | First 2 operations correct. Condone sign error or with $x / y$ interchange |
|  | $x+3=( \pm) \sqrt{\frac{y+7}{2}} \rightarrow x=( \pm) \sqrt{\frac{y+7}{2}}-3 \rightarrow \mathrm{f}^{-1}(x)=-\sqrt{\frac{x+7}{2}}-3$ | A1FT | FT on their $a$ and $b$. Allow $y=\ldots$ |
|  | Domain: $x \geqslant-5$ or $\geqslant-5$ or $[-5, \infty)$ | B1 | Do not accept $y=\ldots, f(x)=\ldots, f^{-1}(x)=\ldots$ |
|  |  | 3 |  |
| 9(c) | $\mathrm{fg}(x)=8 x^{2}-7$ | B1FT | SOI. FT on their -7 from part (a) |
|  | $8 x^{2}-7=193 \rightarrow x^{2}=25 \rightarrow x=-5$ only | B1 |  |
|  | Alternative method for question 9(c) |  |  |
|  | $\mathrm{g}(x)=\mathrm{f}^{-1}(193) \rightarrow 2 x-3=-\sqrt{100}-3$ | M1 | FT on their $\mathrm{f}^{-1}(x)$ |
|  | $x=-5$ only | A1 |  |
|  |  | 2 |  |
| 9(d) | $\left(\text { Largest } k \text { is) }-\frac{1}{2}\right.$ | B1 | Accept $-\frac{1}{2}$ or $k \leqslant-\frac{1}{2}$ |
|  |  | 1 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 10(a) | $2(a+3)^{\frac{1}{2}}-a=0$ | M1 | SOI. <br> Set $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=a$. Can be implied by an answer in terms of $a$ |
|  | $4(a+3)=a^{2} \rightarrow a^{2}-4 a-12=0$ | M1 | Take $a$ to RHS and square. Form 3-term quadratic |
|  | $(a-6)(a+2) \rightarrow a=6$ | A1 | Must show factors, or formula or completing square. Ignore $a=-2$ SC If $a$ is never used maximum of M1A1 for $x=6$, with visible solution |
|  |  | 3 |  |
| 10(b) | $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=(x+3)^{\frac{1}{2}}-1$ | B1 |  |
|  | Sub their $a \rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{3}-1=-\frac{2}{3}($ or $<0) \rightarrow$ MAX | M1A1 | A mark only if completely correct <br> If the second differential is not $-\frac{2}{3}$ correct conclusion must be drawn to award the M1 |
|  |  | 3 |  |
| 10(c) | $(y=) \frac{2(x+3)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{1}{2} x^{2}(+c)$ | B1B1 |  |
|  | Sub $x=$ their $a$ and $y=14 \rightarrow 14=\frac{4}{3}(9)^{\frac{3}{2}}-18+c$ | M1 | Substitute into an integrated expression. $c$ must be present. Expect $c=-4$ |
|  | $y=\frac{4}{3}(x+3)^{\frac{3}{2}}-\frac{1}{2} x^{2}-4$ | A1 | Allow $f(x)=\ldots$. |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 11(a) | $(\tan x-2)(3 \tan x+1)(=0)$. or formula or completing square | M1 | Allow reversal of signs in the factors. Must see a method |
|  | $\tan x=2 \text { or }-\frac{1}{3}$ | A1 |  |
|  | $x=63.4^{\circ}($ only value in range $)$ or $161.6^{\circ}$ (only value in range ) | $\begin{aligned} & \text { B1FT } \\ & \text { B1FT } \end{aligned}$ |  |
|  |  | 4 |  |
| 11(b) | Apply $b^{2}-4 a c<0$ | M1 | SOI. Expect $25-4(3)(k)<0, \tan x$ must not be in coefficients |
|  | $k>\frac{25}{12}$ | A1 | Allow $b^{2}-4 a c=0$ leading to correct $k>\frac{25}{12}$ for M1A1 |
|  |  | 2 |  |
| 11(c) | $k=0$ | M1 | SOI |
|  | $\tan x=0$ or $\frac{5}{3}$ | A1 |  |
|  | $x=0^{\circ}$ or $180^{\circ}$ or $59.0^{\circ}$ | A1 | All three required |
|  |  | 3 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 12(a) | Centre $=(2,-1)$ | B1 |  |
|  | $r^{2}=[2-(-3)]^{2}+[-1-(-5)]^{2}$ or $[2-7]^{2}+[-1-3]^{2} \mathrm{OE}$ | M1 | OR $\frac{1}{2}\left[(-3-7)^{2}+(-5-3)^{2}\right]$ OE |
|  | $(x-2)^{2}+(y+1)^{2}=41$ | A1 | Must not involve surd form $\operatorname{SCB} 3(x+3)(x-7)+(y+5)(y-3)=0$ |
|  |  | 3 |  |
| 12(b) | Centre $=$ their $(2,-1)+\binom{8}{4}=(10,3)$ | B1FT | SOI <br> FT on their $(2,-1)$ |
|  | $(x-10)^{2}+(y-3)^{2}=$ their 41 | B1FT | FT on their 41 even if in surd form $\mathbf{S C B} 2(x-5)(x-15)+(y+1)(y-7)=0$ |
|  |  | 2 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 12(c) | Gradient $m$ of line joining centres $=\frac{4}{8} \mathrm{OE}$ | B1 |  |
|  | Attempt to find mid-point of line. | M1 | Expect ( 6,1$)$ |
|  | Equation of $R S$ is $y-1=-2(x-6)$ | M1 | Through their $(6,1)$ with gradient $\frac{-1}{m}$ |
|  | $y=-2 x+13$ | A1 | AG |
|  | Alternative method for question 12(c) |  |  |
|  | $(x-2)^{2}+(y+1)^{2}-41=(x-10)^{2}+(y-3)^{2}-41 \mathrm{OE}$ | M1 |  |
|  | $x^{2}-4 x+4+y^{2}+2 y+1=x^{2}-20 x+100+y^{2}-6 y+9$ OE | A1 | Condone 1 error or errors caused by 1 error in the first line |
|  | $16 x+8 y=104$ | A1 |  |
|  | $y=-2 x+13$ | A1 | AG |
|  |  | 4 |  |
| 12(d) | $(x-10)^{2}+(-2 x+13-3)^{2}=41$ | M1 | Or eliminate y between $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ |
|  | $x^{2}-20 x+100+4 x^{2}-40 x+100=41 \rightarrow 5 x^{2}-60 x+159=0$ | A1 | AG |
|  |  | 2 |  |

