Question	Answer	Marks	Guidance
$1(\mathrm{i})$	$z=2.326$	B1	
	$62.3 \pm z \frac{13.2}{\sqrt{200}}$	M1	Any z. Expression of correct form. Must be a ' z '
	60.1 to $64.5(3 \mathrm{sfs})$	A1	Must be an interval
		$\mathbf{3}$	
	Yes, because pop not (given to be) normal, or pop distribution unknown	B1	No contradictions
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
2	$\mathrm{E}(X-3 Y)=0.2$	B1	oe
	$\operatorname{Var}(X-3 Y)=12.1+9 \times 8.6(=89.5)$	B1	
	$\frac{0-0.2}{\sqrt{" 89.5 "}} \quad(=-0.021)$	M1	For area consistent with their working
	$\Phi\left({ }^{\prime} 0.021\right.$ ')	M1	
	$=0.508(3 \mathrm{sfs})$	A1	
		5	

Question	Answer	Marks	Guidance
3	$\begin{aligned} & \mathrm{H}_{0}: \lambda=32 \\ & \mathrm{H}_{1}: \lambda<32 \end{aligned}$	B1	Accept 'population mean' (μ)
	$X \sim \mathrm{~N}(32,32)$	B1	seen or implied
	$\frac{21.5-32}{\sqrt{32}}$	M1	Standardise with their values. Allow with no or wrong cc
	$\begin{aligned} & =-1.856 \\ & \operatorname{cv~of~} z=-2.054 \text { (or }-2.055 \text { or }-2.053 \text {) } \end{aligned}$	A1	
	${ }^{\prime} 1.856$ ' <2.054	M1	Valid comparison or comp ϕ ("1.856") with 0.98 i.e. $0.9682<0.98$ oe
	No evidence that fewer accidents at B than at A	A1f	No contradictions Note Use of CV method $\mathrm{x}=20.38 \mathrm{M} 1 \mathrm{~A} 1$ comparison $21.5>20.38 \mathrm{M} 1$ conc A1
		6	

Question	Answer	Marks	
$4(\mathrm{i})$	$\bar{x}=\frac{420}{50}=8.4$	B1	
	$s^{2}=\frac{50}{49}\left(\frac{27530}{50}-\left(\frac{420}{50}\right)^{2}\right)$	M1	Or $1 / 49\left(27530-(420)^{2} / 50\right)$
	$=489.8(36 \ldots)$	A1	Must see $\geqslant 4 \mathrm{sf}$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(ii)	$\Phi^{-1}(0.9377)=1.536$	B1	
	$\frac{5--^{\prime 8.4^{\prime}}}{\sqrt{\frac{40}{n}}}=-1.536$	M1	Attempting to standardise - must have correct form
	$n=\left(\frac{1.536}{3.4}\right)^{2} \times 490 \quad(=100.0048)$	M1	Attempting numerical expression for n or $\sqrt{ } \mathrm{n}$ (must have used a ' z ' value) may be implied by answer
	$n=100$	A1	No errors seen. Must be whole number
		4	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$1-\mathrm{e}^{-1.8}(1+1.8)$	M1	Accept any λ. Accept $1-\mathrm{P}(0,1,2)$
	$=0.537(3 \mathrm{sf})$	A1	
	$5(\mathrm{ii})$	$\lambda=2.2$	$\mathbf{2}$

Question	Answer	Marks	Guidance
5(iii)	$1-e^{-1.8 t} \geqslant 0.99 \quad$ or $1-e^{-\lambda} \geqslant 0.99$	M1	Condone $=$ signs/incorrect inequality signs
	$\begin{array}{ll} e^{-1.8 t} \leqslant 0.01 \\ -1.8 t \leqslant \ln 0.01 & \text { or } e^{-\lambda} \leqslant 0.01 \end{array}$	M1	Valid attempt take logs (must have single term on each side)
	$t \geqslant 2.56$ She must watch for at least 2.56 (hours)	A1	or 2 hours, 34 mins or better. No errors seen
		3	

Question	Answer	Marks	
6(i)	Test is for "difference" oe	B1	Test is not for 'increase' or 'decrease' oe No contradictions
		$\mathbf{1}$	
6(ii)	0.05	$\mathbf{B 1}$	
	Conclude mean time is different when it is not	B1	oe, in context
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(iii)	Assume $\sigma=6.4$	B1	
	$\begin{aligned} & \mathrm{H}_{0}: \text { pop mean }=91.4 \\ & \mathrm{H}_{1}: \text { pop mean } \neq 91.4 \end{aligned}$	B1	Allow μ, but not 'mean'
	$\bar{x}=\frac{568.5}{6}(=94.75)$	B1	
	$\frac{\text { '94.75'-91.4 }}{\frac{6.4}{\sqrt{6}}}$	M1	Must have $\sqrt{ } 6$
	$\begin{aligned} & =1.282 \\ & \operatorname{cv~of~} z=1.96 \end{aligned}$	A1	
	${ }^{\prime} 1.282$ ' <1.96	M1	Valid comparison or comp ϕ ("1.282") with $0.9750 .9(001)<0.975$ or 0.0999 (or 0.1) >0.025 consistent use of one tail test can score M1 for comparison with 1.645 oe but not A1ft oe. No contradictions. ft their z.
	No evidence mean time different	A1 ft	CV method $\mathrm{x}=96.52 \mathrm{M} 1 \mathrm{~A} 194.75<96.52 \mathrm{M} 1$ Conc A1
		7	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & \sqrt{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos x \mathrm{~d} x \\ & =\sqrt{2}[\sin x]_{\frac{\pi}{6}}^{\frac{\pi}{4}} \end{aligned}$	M1	Attempt integ $\mathrm{f}(x)$ with correct limits
	$=\frac{2-\sqrt{2}}{2}$ oe or $0.293(3 \mathrm{sf})$	A1	SC Final answer of 0.707 scores B1sc
		2	
7(ii)	$\sqrt{2} \int_{0}^{m} \cos x \mathrm{~d} x=0.5$	M1	Attempt to integ $f(x) \&=0.5$. Ignore limits. Condone missing $\sqrt{ } 2$
	$\begin{aligned} & \sqrt{2}[\sin x]_{0}^{m}=0.5 \\ & \sqrt{2} \sin m=0.5 \end{aligned}$	A1	Correct integral and limits 0 to unknown $\&=0.5$ Condone missing $\sqrt{ } 2$
	$\sin m=\frac{1}{2 \sqrt{2}}$ oe	M1	For rearranging their expression to the form $\sin m=\ldots(\sin m=$ $0.35355 \ldots$... or 0.354) seen or implied
	$m=0.361(3 \mathrm{sfs})$	A1	No errors seen (Note 20.705 can score M1 A1 M1 A0)
		4	

Question	Answer	Marks	Guidance
7(iii)	$\sqrt{2} \int_{0}^{\frac{\pi}{4}} x \cos x \mathrm{~d} x$	M1	Attempt to integ $x \mathrm{f}(x)$. Ignore limits. Condone missing $\sqrt{ } 2$
	$=\sqrt{2}\left\{[x(\sin x)]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \sin x \mathrm{~d} x\right\}$	M1	Attempt to integ by parts leading to expression of form $\pm x \sin x \pm \cos x$ with correct limits
	$=\sqrt{2}\left\{\frac{\pi}{4 \sqrt{2}}-0-[-\cos x]_{0}^{\frac{\pi}{4}}\right\}$	A1	For $\sqrt{2}(x \sin x-(-\cos x))$ with correct limits
	$\begin{aligned} & =\sqrt{2}\left\{\frac{\pi}{4 \sqrt{2}}+\cos \frac{\pi}{4}-1\right\} \\ & =\frac{\pi}{4}+1-\sqrt{2} \text { oe or } 0.371(3 \mathrm{sf}) \end{aligned}$	A1	
		4	

