Question	Answer	Marks	Guidance
1(i)	$0.6 \times 0.2+0.4 \times 0.32$	M1	Addition of 2 two-factor terms $0.6 \times a+0.4 \times b$
	$=0.248, \frac{31}{125}$	A1	CAO
		2	
1(ii)	Method 1		
	$\mathrm{P}(\mathrm{GS} \mid \text { Not Red socks })=\frac{0.4 \times 0.68}{1-(i)}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	1 - their (i) as denominator in fraction
	$=0.362, \frac{17}{47}$	A1	
	Method 2		
	$\mathrm{P}(\mathrm{GS} \mid \text { Not Red socks })=\frac{0.4 \times 0.68}{0.6 \times 0.8+0.4 \times 0.68}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	Correct or (their (i))' as denominator in fraction
	$=0.362, \frac{17}{47}$	A1	
		3	

Question	Answer	Marks	Guidance
2(i)	$\begin{aligned} & \sigma^{2}=\frac{\sum(x-c)^{2}}{n}-\left(\frac{\sum(x-c)}{n}\right)^{2} \\ & 3.2^{2}=\frac{3099.2}{40}-\left(\frac{\sum(x-c)}{40}\right)^{2} \end{aligned}$	M1	Use correct formula with values substituted
	$\begin{aligned} & \left(\frac{\sum(x-c)}{40}\right)^{2}=67.24: \\ & \sum(x-c)=40 \times \sqrt{67.24} \end{aligned}$	M1	Rearrange to make their $\left(\frac{\sum(x-c)}{40}\right)^{2}$ the subject, unsimplified.
	$=328$	A1	Exact value, cao
		3	
2(ii)	$\begin{aligned} & \sum x-40 c=\text { their }(\mathbf{i}) \\ & \text { Mean }=\frac{\text { their }(\boldsymbol{i})}{40}+50 \\ & =58.2 \end{aligned}$	B1FT	FT their (i)
		1	

Question	Answer	Marks	Guidance
3(i)	$\mathrm{P}(X<132)=\mathrm{P}\left(Z<\frac{132-140}{12}\right)=\mathrm{P}(Z<-0.6667)$	M1	Using \pm standardisation formula, no continuity correction, not σ^{2} or $\sqrt{ } \sigma$
	$=1-0.7477$	M1	Appropriate area Φ from standardisation formula $\mathrm{P}(\mathrm{z}<\ldots$.$) in final$ solution
	$=0.252 \mathrm{awrt}$	A1	Condone linear interpolation $=0.25243$
		3	
3(ii)	$\mathrm{P}($ time $>\mathrm{k})=0.675, z=-0.454$	B1	± 0.454 seen
	$\frac{k-140}{12}=-0.454$	M1	An equation using the standardisation formula with a z-value (not $1-z$), condone σ^{2} or $\sqrt{ } \sigma$
	$k=135,134.6,134.55$	A1	B0M1A1 max from -0.45
		3	

Question	Answer					Marks	Guidance
4(i)	x	-1	1	2	3	B1	Probability distribution table with correct values of x, no additional values unless with probability 0 stated, at least one correct probability including k
	p	k	k	$4 k$	$9 k$		
	$15 k=1$,					M1	Equating $\Sigma p=1$, may be implied by answer
	$k=\frac{1}{15}$					A1	If 0 scored, SCB 2 for probability distribution table with correct numerical probabilities.
	3						

Question	Answer	Marks	Guidance
4(ii)	Method 1		
	$\mathrm{E}(X)=8 k+27 k=35 k=\frac{35}{15}=\frac{7}{3}$	B1FT	FT if $0<$ their $k<1$
	$\operatorname{Var}(X)=(k+k+16 k+81 k)-(35 k)^{2}$	M1	Correct formula for variance, in terms of k at least - must have 'mean ${ }^{2}$ (ft).
	$=1.16, \frac{52}{45}$	A1	
	Method 2		
	$\mathrm{E}(X)=\frac{8}{15}+\frac{27}{15}=\frac{35}{15}=\frac{7}{3}$	B1FT	FT if $0<$ their $k<1$
	$\operatorname{Var}(X)=\frac{1}{15}+\frac{1}{15}+\frac{16}{15}+\frac{81}{15}-\left(\frac{7}{3}\right)^{2}$	M1	Subst their values in correct var formula - must have ' - mean 2 '(ft) (condone probs not summing to exactly 1)
	$=1.16(=52 / 45)$	A1	Using their values from (i)
		3	

Question	Answer			Marks	Guidance
5(i)	Dolphins		Sharks	B1	Correct stem can be upside down, ignore extra values,
	$\begin{array}{r} 95532 \\ \\ \\ 53 \end{array}$		9	B1	Correct Dolphin must be on LHS,
		6 7	468 01247	B1	Correct Sharks on either LHS or RHS of back-to-back. Alignment \pm half a space, no late entries squeezed in, no crossing out if shape is changed. Condone a separate RHS stem-and-leaf diagram
	220	8	04	B1FT	Correct single key for their single diagram, need both teams identified and ' kg ' stated at least once here or in leaf headings or title.
			Key: $3\|6\| 4$ means 63 kg for Dolphins and 64 kg for Sharks		
				4	
5(ii)	$\begin{aligned} & \text { Median }=72 \\ & \mathrm{LQ}=65, \mathrm{UQ}=80, \end{aligned}$			B1	$72<\mathrm{UQ}<82-62<\mathrm{LQ}<72$
	$\mathrm{IQR}=80-65$			M1	nfww
	$=15$			A1	SCB1 if M0 scored for $\mathrm{LQ}=65$ and $\mathrm{UQ}=80$
				3	

Question	Answer	Marks	Guidance
6(i)	$\mathrm{P}(4,5,6)={ }^{6} \mathrm{C}_{4} 0.35^{4} 0.65^{2}+{ }^{6} \mathrm{C}_{5} 0.35^{5} 0.65^{1}+0.35^{6}$	M1	Binomial term of form ${ }^{6} \mathrm{C}_{x} p^{x}(1-p)^{6-x} 0<p<1$ any $p, x \neq 6,0$
		A1	Correct unsimplified answer
	$=0.117$	A1	
		3	
6(ii)	$\begin{aligned} & 1-0.65^{n}>0.95 \\ & 0.65^{n}<0.05 \end{aligned}$	M1	Equation or inequality involving ' 0.65^{n} or $0.35^{n \prime}$ ' and ' 0.95 or 0.05 '
	$n>\frac{\log 0.05}{\log 0.65}=6.95$	M1	Attempt to solve their exponential equation using logs or Trial and Error.
	$n=7$	A1	CAO
		3	
6(iii)	$\begin{aligned} & \text { Mean }=0.35 \times 100=35 \\ & \text { Variance }=0.35 \times 0.65 \times 100=22.75 \end{aligned}$	B1	Correct unsimplified $n p$ and $n p q$,
	$\mathrm{P}\left(z>\frac{39.5-35}{\sqrt{22.75}}\right)=P(z>0.943)$	M1	Substituting their μ and σ (condone σ^{2}) into the \pm Standardisation Formula with a numerical value for ' 39.5 '.
		M1	Using continuity correction 39.5 or 40.5
	$=1-0.8272$	M1	Appropriate area Φ from standardisation formula $\mathrm{P}(\mathrm{z}>\ldots$.$) in final$ solution, $(>0.5$ if z is $-\mathrm{ve},<0.5$ if z is +ve)
	$=0.173$	A1	Final answer
		5	

Question	Answer	Marks	Guidance
7(i)	$\frac{9!}{2!3!}$	M1	9 ! alone on numerator, 2 ! and/or 3! on denominator
	$=30240$	A1	Exact value, final answer
		2	
7(ii)	$\begin{aligned} & \mathrm{A}^{\wedge \wedge \wedge} \mathrm{A} \wedge \wedge \wedge \mathrm{~A} \\ & \text { Arrangements }=\frac{6!}{2!}=360 \end{aligned}$	B1	Final answer
		1	
7(iii)	$\begin{aligned} & \mathrm{M}^{\wedge} \mathrm{M}^{\wedge} \wedge \wedge \wedge \wedge \wedge \\ & =\frac{7!}{3!} \times 7 \end{aligned}$	M1	7 ! in numerator, (considering letters not M)
		M1	Division by 3! only (removing repeated As)
		M1	Multiply by 7 (positions of M-M)
	$=5880$	A1	Exact value, final answer
	Method 2 (choosing letter between Ms)		
	$1 \times \frac{6!}{2!} \times 7+4 \times \frac{6!}{3!} \times 7$	M1	$6!$ in sum of 2 expressions $a 6!+b 6$!
		M1	Multiply by 7 in both expressions (positions of M-M)
	$=2520+3360$	M1	$\frac{c}{2!}+\frac{d}{3!}$ seen (removing repeated As)
	$=5880$	A1	Exact value

Question	Answer	Marks	Guidance
7(iii)	Method 3		
	$(\mathrm{MAM}) \wedge \wedge \wedge \wedge \wedge \wedge=7!/ 2!=2520$	M1	7 ! in numerator (considering 6 letters + block)
	$\left(\mathrm{MA}^{\prime} \mathrm{M}\right)^{\wedge} \wedge \wedge \wedge \wedge \wedge=7!/ 3!\times 4=840 \times 4=3360$	M1	Division by 2 ! and 3! seen in different terms
	Total $=2520+3360$	M1	Summing 5 correct scenarios only
	$=5880$	A1	Exact value
		4	
7(iv)	$\mathrm{M} \mathrm{A} \wedge={ }^{4} \mathrm{C}_{1}=4$	B1	Final answer
		1	
7(v)	$\begin{array}{ll} M \wedge \wedge & :^{4} C_{2} \end{array}=6$	M1	Either option $\mathrm{M} \mathrm{M}^{\wedge}$ or $\mathrm{M}^{\wedge} \wedge$ correct, accept unsimplified
	$\begin{array}{ll} \text { M M A : } & =1 \\ \text { M A A : } & =1 \\ \left(\text { M A }_{-}:{ }^{4} \mathrm{C}_{1}\right. & =4) \end{array}$	M1	Add 4 or 5 correct scenarios only
	Total $=16$	A1	Value must be clearly stated
	Method 2		
	$\mathrm{MM}{ }^{\wedge}={ }^{5} \mathrm{C}_{1} \quad=5$	M1	Either option $\mathrm{M} \mathrm{M}{ }^{\wedge}$ or $\mathrm{M}^{\wedge} \wedge$ correct, accept unsimplified
	$\mathrm{M} \wedge \wedge={ }^{5} \mathrm{C}_{2} \quad=10$	M1	Adding 2 or 3 correct scenarios only
	$\mathrm{MAA}=\quad=1 \quad$ Total $=16$	A1	Value must be clearly stated
		3	

