Cambridge International AS/A Level – Mark Scheme PUBLISHED

_	PUBLIS	SHED	9709_m19_ms_62
Question	Answer	Marks	Guidance
1(i)	$0.6 \times 0.2 + 0.4 \times 0.32$	M1	Addition of 2 two-factor terms $0.6 \times a + 0.4 \times b$
	$= 0.248, \frac{31}{125}$	A1	САО
		2	
1(ii)	Method 1		
	$P(GS Not Red socks) = \frac{0.4 \times 0.68}{1 - (i)}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	1 – their (i) as denominator in fraction
	$=0.362, \frac{17}{47}$	A1	
	Method 2		
	P(GS Not Red socks) = $\frac{0.4 \times 0.68}{0.6 \times 0.8 + 0.4 \times 0.68}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	Correct or (their (i))' as denominator in fraction
	$= 0.362, \frac{17}{47}$	A1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

	PUBLISHED 9709_m19_ms_6						
Question	Answer	Marks	Guidance				
2(i)	$\sigma^{2} = \frac{\sum (x-c)^{2}}{n} - \left(\frac{\sum (x-c)}{n}\right)^{2}$ $3.2^{2} = \frac{3099.2}{40} - \left(\frac{\sum (x-c)}{40}\right)^{2}$	M1	Use correct formula with values substituted				
	$\left(\frac{\Sigma(x-c)}{40}\right)^2 = 67.24 :$ $\Sigma(x-c) = 40 \times \sqrt{67.24}$	M1	Rearrange to make <i>their</i> $\left(\frac{\Sigma(x-c)}{40}\right)^2$ the subject, unsimplified.				
	= 328	A1	Exact value, cao				
		3					
2(ii)	$\sum x - 40c = their (i)$ Mean = $\frac{their (i)}{40} + 50$ = 58.2	B1FT	FT their (i)				
		1					

Cambridge International AS/A Level – Mark Scheme

	PUBLISHED 9709_m19_ms_6						
Question	Answer	Marks	Guidance				
3(i)	$P(X<132) = P\left(Z < \frac{132 - 140}{12}\right) = P(Z < -0.6667)$	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$				
	= 1 - 0.7477	M1	Appropriate area Φ from standardisation formula P(z<) in final solution				
	= 0.252 awrt	A1	Condone linear interpolation $= 0.25243$				
		3					
3(ii)	P(time>k) = 0.675, z = -0.454	B1	±0.454 seen				
	$\frac{k - 140}{12} = -0.454$	M1	An equation using the standardisation formula with a <i>z</i> -value (not $1-z$), condone σ^2 or $\sqrt{\sigma}$				
	<i>k</i> = 135, 134.6, 134.55	A1	B0M1A1 max from –0.45				

3

Question	Answer						Guidance
4(i)	x	-1	1	2	3	B1	Probability distribution table with correct values of <i>x</i> , no additional values unless with probability 0 stated, at least one correct
	р	k	k	4 <i>k</i>	9 <i>k</i>		probability including k
	15k = 1,		M1	Equating $\Sigma p = 1$, may be implied by answer			
	$k = \frac{1}{15}$					A1	If 0 scored, SCB2 for probability distribution table with correct numerical probabilities.
						3	

March 2019

9709 m19 ms 62

Question	Answer	Marks	Guidance
4(ii)	Method 1		
	$E(X) = 8k + 27k = 35k = \frac{35}{15} = \frac{7}{3}$	B1FT	FT if 0< <i>their k</i> <1
	$\operatorname{Var}(X) = (k + k + 16k + 81k) - (35k)^2$	M1	Correct formula for variance, in terms of k at least – must have '– mean ² '(ft).
	$= 1.16, \frac{52}{45}$	A1	
	Method 2		
	$E(X) = \frac{8}{15} + \frac{27}{15} = \frac{35}{15} = \frac{7}{3}$	B1FT	FT if 0< <i>their k</i> <1
	$Var(X) = \frac{1}{15} + \frac{1}{15} + \frac{16}{15} + \frac{81}{15} - \left(\frac{7}{3}\right)^2$	M1	Subst <i>their</i> values in correct var formula – must have '– mean ² '(ft) (condone probs not summing to exactly 1)
	= 1.16 (= 52/45)	A1	Using their values from (i)
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2019 9709 m19 ms 62

Question	Answer				Guidance
5(i)	Dolphins		Sharks	B1	Correct stem can be upside down, ignore extra values,
		5	9	B1	Correct Dolphin must be on LHS,
	9 5 5 3 2 5 3 2	6 7	4 6 8 0 1 2 4 7	B1	Correct Sharks on either LHS or RHS of back-to-back. Alignment ± half a space, no late entries squeezed in, no crossing out if shape is changed. Condone a separate RHS stem-and-leaf diagram
	2 2 0	8	0 4	B1FT	Correct single key for <i>their</i> single diagram, need both teams identified and 'kg' stated at least once here or in leaf headings or title.
			Key: 3 6 4 means 63 kg for Dolphins and 64 kg for Sharks		
				4	
5(ii)	Median = 72 LQ = 65, UQ = 80,			B1	72 <uq<82-62<lq<72< td=""></uq<82-62<lq<72<>
	IQR = 80 - 65			M1	nfww
	= 15			A1	SCB1 if M0 scored for $LQ = 65$ and $UQ = 80$
				3	

March 2019

9709_m19_ms_62

Question	Answer	Marks	Guidance
6(i)	$P(4, 5, 6) = {}^{6}C_{4} 0.35^{4} 0.65^{2} + {}^{6}C_{5} 0.35^{5} 0.65^{1} + 0.35^{6}$	M1	Binomial term of form ${}^{6}C_{x}p^{x}(1-p)^{6-x}$ $0 any p, x \neq 6, 0$
		A1	Correct unsimplified answer
	= 0.117	A1	
		3	
6(ii)	$ \begin{array}{l} 1 - 0.65^n > 0.95 \\ 0.65^n < 0.05 \end{array} $	M1	Equation or inequality involving ' 0.65^n or 0.35^n ' and ' 0.95 or 0.05 '
	$n > \frac{\log 0.05}{\log 0.65} = 6.95$	M1	Attempt to solve <i>their</i> exponential equation using logs or Trial and Error.
	<i>n</i> = 7	A1	САО
		3	
6(iii)	Mean = $0.35 \times 100 = 35$ Variance = $0.35 \times 0.65 \times 100 = 22.75$	B1	Correct unsimplified <i>np</i> and <i>npq</i> ,
	$P\left(z > \frac{39.5 - 35}{\sqrt{22.75}}\right) = P(z > 0.943)$	M1	Substituting <i>their</i> μ and σ (condone σ^2) into the ±Standardisation Formula with a numerical value for '39.5'.
		M1	Using continuity correction 39.5 or 40.5
	= 1-0.8272	M1	Appropriate area Φ from standardisation formula P(z>) in final solution, (>0.5 if <i>z</i> is -ve, <0.5 if <i>z</i> is +ve)
	= 0.173	A1	Final answer
		5	

March 2019

9709 m19 ms 62

			9709_III_9_IIIS_0		
Question	Answer	Marks	Guidance		
7(i)	$\frac{9!}{2!3!}$	M1	9! alone on numerator, 2! and/or 3! on denominator		
	= 30240	A1	Exact value, final answer		
		2			
7(ii)	$A^{\wedge\wedge\wedge}A^{\wedge\wedge\wedge}A$	B1	Final answer		
	Arrangements = $\frac{6!}{2!} = 360$				
		1			
7(iii)	$ \begin{array}{c} M \wedge M \wedge \wedge \wedge \wedge \wedge \\ 7! \end{array} $	M1	7! in numerator, (considering letters not M)		
	$=\frac{7!}{3!}\times7$				
		M1	Division by 3! only (removing repeated As)		
		M1	Multiply by 7 (positions of M-M)		
	= 5880	A1	Exact value, final answer		
	Method 2 (choosing letter between Ms)				
	$1 \times \frac{6!}{2!} \times 7 + 4 \times \frac{6!}{3!} \times 7$	M1	6! in sum of 2 expressions $a6! + b6!$		
		M1	Multiply by 7 in both expressions (positions of M-M)		
	= 2520 + 3360	M1	$\frac{c}{2!} + \frac{d}{3!}$ seen (removing repeated As)		
	= 5880	A1	Exact value		

March 2019

9709 m19 ms 62

Question	Answer	Marks	Guidance
7(iii)	Method 3		
	$(MAM)^{\wedge \wedge \wedge \wedge} = 7!/2! = 2520$	M1	7! in numerator (considering 6 letters + block)
	$(MA'M)^{\wedge \wedge \wedge \wedge} = 7!/3! \times 4 = 840 \times 4 = 3360$	M1	Division by 2! and 3! seen in different terms
	Total = 2520 + 3360	M1	Summing 5 correct scenarios only
	= 5880	A1	Exact value
		4	
7(iv)	$M A^{A} = {}^{4}C_{1} = 4$	B1	Final answer
		1	
7(v)	$ \begin{array}{ll} M^{\wedge \wedge}: {}^{4}C_{2} &= 6 \\ M M^{\wedge}: {}^{4}C_{1} &= 4 \end{array} $	M1	Either option M M ^ or M ^ ^ correct, accept unsimplified
	$ \begin{array}{rcl} M \ M \ A : &= 1 \\ M \ A \ A : &= 1 \\ (M \ A \ :^{4}C_{1} &= 4) \end{array} $	M1	Add 4 or 5 correct scenarios only
	Total = 16	A1	Value must be clearly stated
	Method 2		
	$M M^{\wedge} = {}^{5}C_{1} = 5$	M1	Either option M M ^ or M ^ ^ correct, accept unsimplified
	$M^{\wedge \wedge} = {}^{5}C_{2} = 10$	M1	Adding 2 or 3 correct scenarios only
	M A A = = 1 Total = 16	A1	Value must be clearly stated
		3	