Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$x' = 24\cos 30 (= 12\sqrt{3})$	B1	Use horizontal motion
	$y' = 24\sin 30 - 4g(=-28)$	B1	Use vertical motion
	$V^{2} = (24\cos 30)^{2} + (24\sin 30 - 4g)^{2} = (12\sqrt{3})^{2} + (-28)^{2}$ OR tan\alpha = (24\sin30 - 4g)/(24\cos30) = -28/(12\sqrt{3})^{2}	M1	Where V is the required speed and α is the angle below the horizontal
	$V = 34.9 \text{ m s}^{-1}$	A1	
	$\alpha = 53.4^{\circ}$ below the horizontal	A1	
		5	

Question	Answer	Marks	Guidance
2(i)	Total volume $(= 27 + 8 + 1) = 36$	B1	
	$36x = 27 \times 1.5 + 8 \times 4 + 1 \times 5.5$	M1	Take moments about base of largest cube
	x (= 13/6) = 2.17 m	A1	
		3	
2(ii)	Mass of new cube = $35 + m$	B1	Where m is the mass of the new cube
	$(35 + m) \times 3 = 27 \times 1.5 + 8 \times 4 + 5.5m$ (leads to m = 13)	M1	Take moments about base of largest cube
	13:1 or 1:13	A1	Accept 13
		3	

9709/52

Cambridge International A Level – Mark Scheme **PUBLISHED**

March 2019

970	9 m1	9 ms	52

Question	Answer	Marks	Guidance
3(i)	$x = 4t$ and $y = 6t - 5t^{2}$	M1	Use horizontal and vertical motion and attempt to eliminate t
	y [= $6x/4 - 5(x/4)^2$] = 1.5x - 5x ² /16 or 1.5x - 0.3125x ²	A1	
		2	
3(ii)	$\tan\theta = 1.5$	M1	Use the trajectory equation from the formula sheet
	$\theta = 56.3^{\circ}$	A1	
	$V^2 cos^2 56.3 = 16$	M1	Again use the trajectory equation
	$V = 7.21 \text{ m s}^{-1}$	A1	
	OR		
	$V\cos\theta = 4$ and $V\sin\theta = 6$	M1	Initial horizontal and vertical velocities
	$V^2 \cos^2 \theta + V^2 \sin^2 \theta = 4^2 + 6^2 \text{ OR } \tan \theta = 6/4$	M1	Use Pythagoras's theorem or trigonometry of a right angled triangle
	$V = 7.21 \text{ m s}^{-1}$	A1	
	$\theta = 56.3^{\circ}$	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4	$T\cos 60 = 0.3g$	M1	Resolve vertically
	T = 6 N	A1	
	T = 16e/0.8 (= 6) leads to $e = 0.3$	M1	Use T = $\lambda x/L$
	$r = (0.8 + 0.3)\sin 60 (= 1.1\sin 60)$	A1	
	$T\sin 60 = 0.3 v^2 / (1.1 \sin 60)$	M1	Use N2L horizontally
	$v = 4.06 \text{ m s}^{-1}$	A1	
		6	

Question	Answer	Marks	Guidance
5(i)	0.3g = 24e/0.6	M1	Note greatest speed occurs at the equilibrium position. Use $T=\lambda x/L$
	e = 0.075 m	A1	Fall = 0.275 m
	PE Change = $0.3g \times 0.275$	B1	
	$0.3 v^2 / 2 = 0.3 g \times 0.275 - 24 \times 0.075^2 / (2 \times 0.6)$	M1	Set up a 3 term energy equation
	$v = 2.18 \text{ m s}^{-1}$	A1	
		5	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(ii)	$0.3g(0.2 + E) = 24 E^2 / (2 \times 0.6)$	M1	Set up an energy equation. Note $v = 0$ at the greatest distance
	$20 E^2 - 3E - 0.6 = 0$	M1	Attempt to solve a 3 term quadratic equation
	E = 0.264 and so greatest distance is 0.864 m	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	Area of hole = πr^2 and Area of original circle = $25\pi r^2$	M1	
	Area of cross-section = $24\pi r^2$	A1	
	$\pi r^2 (2\mathbf{r}) = 24\pi r^2 (\mathbf{d})$	M1	Take moments about the centre of the cylinder
	$d = r/12 \ (= 0.083333r)$	A1	
		4	
6(ii)	$P(2 \times 5r) = W(r/12)\cos 60$	M1	Take moments about the point of contact with the plane
	$P = W\cos \frac{60}{120} = \frac{W}{240} = 0.00417W (= F)$	A1	
	$\mu = (W\cos 60/120)/W$	M1	Use $F = \mu R$ Note $R = W$ by resolving vertically
	$\mu = 1/240 = 0.00417$	A1	
		4	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(i)	0.2 mg = 0.06×8	M1	Resolve along the plane
	$m = 0.24 \text{ kg} \qquad AG$	A1	
		2	
7(ii)	$m\frac{dv}{dt} = 0.06t - 0.2mg \text{ or } 0.24\frac{dv}{dt} = 0.06t - 0.2 \times 0.24g$	M1	Use N2L along the plane
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 0.25t - 2 \qquad \mathbf{AG}$	A1	
	$\int \mathrm{d}v = \int (0.25t - 2) \mathrm{d}t$	M1	Attempt to integrate
	$v = 0.25 t^2 / 2 - 2t + c$, Put $v = 0$ and $t = 4$ (leads to $c = 6$)	M1	Attempt to find c
	Initial velocity = 6 m s^{-1}	A1	
		5	
7(iii)	$x = \int (0.25 t^2 / 2 - 2t + 6) dt$	M1	Attempt to integrate
	$x = 0.25 t^3 / 6 - t^2 + 6t (+k)$	A1ft	ft candidates c from part (ii)
	Finds or assumes $k = 0$ and substitutes $t = 4$ OR uses limits of 0 and 4	M1	
	$OP = 32/3 = 10\frac{2}{3} = 10.7 \text{ m}$	A1	
		4	