Question	Answer	Marks	Guidance
1	$x^{\prime}=24 \cos 30(=12 \sqrt{3})$	$\mathbf{B 1}$	Use horizontal motion
	$y^{\prime}=24 \sin 30-4 \mathrm{~g}(=-28)$	B1	Use vertical motion
	$V^{2}=(24 \cos 30)^{2}+(24 \sin 30-4 g)^{2}=(12 \sqrt{3})^{2}+(-28)^{2}$ OR $\tan \alpha=(24 \sin 30-4 \mathrm{~g}) /(24 \cos 30)=-28 /(12 \sqrt{3})^{2}$	$\mathbf{M 1}$	Where V is the required speed and α is the angle below the horizontal
	V $=34.9 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	$\mathbf{5}$
	$\alpha=53.4^{\circ}$ below the horizontal		

Question	Answer	Marks	Guidance
2(i)	Total volume $(=27+8+1)=36$	B1	
	$36 x=27 \times 1.5+8 \times 4+1 \times 5.5$	M1	Take moments about base of largest cube
	$x(=13 / 6)=2.17 \mathrm{~m}$	A1	
		3	
2(ii)	Mass of new cube $=35+\mathrm{m}$	B1	Where m is the mass of the new cube
	$(35+m) \times 3=27 \times 1.5+8 \times 4+5.5 \mathrm{~m}$ (leads to $\mathrm{m}=13)$	M1	Take moments about base of largest cube
	$13: 1$ or $1: 13$	A1	Accept 13
		3	

Question	Answer	Marks	Guidance
3(i)	$x=4 \mathrm{t}$ and $y=6 \mathrm{t}-5 t^{2}$	M1	Use horizontal and vertical motion and attempt to eliminate t
	$y\left[=6 x / 4-5(x / 4)^{2}\right]=1.5 x-5 x^{2} / 16$ or $1.5 x-0.3125 x^{2}$	A1	
		2	
3(ii)	$\tan \theta=1.5$	M1	Use the trajectory equation from the formula sheet
	$\theta=56.3{ }^{\circ}$	A1	
	$V^{2} \cos ^{2} 56.3=16$	M1	Again use the trajectory equation
	$\mathrm{V}=7.21 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	OR		
	$\mathrm{V} \cos \theta=4$ and $\mathrm{V} \sin \theta=6$	M1	Initial horizontal and vertical velocities
	$V^{2} \cos ^{2} \theta+V^{2} \sin ^{2} \theta=4^{2}+6^{2}$ OR $\tan \theta=6 / 4$	M1	Use Pythagoras's theorem or trigonometry of a right angled triangle
	$\mathrm{V}=7.21 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	$\theta=56.3^{\circ}$	A1	
		4	

Question	Answer	Marks	Guidance
4	$\mathrm{T} \cos 60=0.3 \mathrm{~g}$	M1	Resolve vertically
	$\mathrm{T}=6 \mathrm{~N}$	A1	
	$\mathrm{T}=16 \mathrm{e} / 0.8(=6)$ leads to $\mathrm{e}=0.3$	M1	Use $T=\lambda x / L$
	$\mathrm{r}=(0.8+0.3) \sin 60(=1.1 \sin 60)$	A1	
	$\mathrm{T} \sin 60=0.3 v^{2} /(1.1 \sin 60)$	M1	Use N2L horizontally
	$\mathrm{v}=4.06 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		6	

Question	Answer	Marks	Guidance
5(i)	$0.3 \mathrm{~g}=24 \mathrm{e} / 0.6$	M1	Note greatest speed occurs at the equilibrium position. Use $T=\lambda x / L$
	$\mathrm{e}=0.075 \mathrm{~m}$	A1	Fall $=0.275 \mathrm{~m}$
	PE Change $=0.3 \mathrm{~g} \times 0.275$	B1	
	$0.3 v^{2} / 2=0.3 \mathrm{~g} \times 0.275-24 \times 0.075^{2} /(2 \times 0.6)$	M1	Set up a 3 term energy equation
	$\mathrm{v}=2.18 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		5	

Question	Answer	Marks	Guidance
$5(\mathrm{ii})$	$0.3 \mathrm{~g}(0.2+\mathrm{E})=24 E^{2} /(2 \times 0.6)$	M1	Set up an energy equation. Note $\mathrm{v}=0$ at the greatest distance
	$20 E^{2}-3 \mathrm{E}-0.6=0$	M1	Attempt to solve a 3 term quadratic equation
	$\mathrm{E}=0.264$ and so greatest distance is 0.864 m	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6 (i)	Area of hole $=\pi r^{2}$ and Area of original circle $=25 \pi r^{2}$	M1	
	Area of cross-section $=24 \pi r^{2}$	A1	
	$\pi r^{2}(2 \mathrm{r})=24 \pi r^{2}(\mathrm{~d})$	M1	Take moments about the centre of the cylinder
	$\mathrm{d}=\mathrm{r} / 12(=0.083333 \ldots \mathrm{r})$	A1	
		4	
6(ii)	$\mathrm{P}(2 \times 5 \mathrm{r})=\mathrm{W}(\mathrm{r} / 12) \cos 60$	M1	Take moments about the point of contact with the plane
	$\mathrm{P}=\mathrm{W} \cos 60 / 120=\mathrm{W} / 240=0.00417 \mathrm{~W}(=\mathrm{F})$	A1	
	$\mu=(\mathrm{W} \cos 60 / 120) / \mathrm{W}$	M1	Use $\mathrm{F}=\mu \mathrm{R}$ Note $\mathrm{R}=\mathrm{W}$ by resolving vertically
	$\mu=1 / 240=0.00417$	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	$0.2 \mathrm{mg}=0.06 \times 8$	M1	Resolve along the plane
	$\mathrm{m}=0.24 \mathrm{~kg}$ (AG	A1	
		2	
7(ii)	$\mathrm{m} \frac{\mathrm{d} v}{\mathrm{~d} t}=0.06 \mathrm{t}-0.2 \mathrm{mg}$ or $0.24 \frac{\mathrm{~d} v}{\mathrm{~d} t}=0.06 \mathrm{t}-0.2 \times 0.24 \mathrm{~g}$	M1	Use N2L along the plane
	$\begin{equation*} \frac{\mathrm{d} v}{\mathrm{~d} t}=0.25 \mathrm{t}-2 \tag{AG} \end{equation*}$	A1	
	$\int \mathrm{d} v=\int(0.25 t-2) \mathrm{d} t$	M1	Attempt to integrate
	$\mathrm{v}=0.25 t^{2} / 2-2 \mathrm{t}+\mathrm{c}$, Put $\mathrm{v}=0$ and $\mathrm{t}=4($ leads to $\mathrm{c}=6)$	M1	Attempt to find c
	Initial velocity $=6 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		5	
7(iii)	$x=\int\left(0.25 t^{2} / 2-2 \mathrm{t}+6\right) \mathrm{d} t$	M1	Attempt to integrate
	$x=0.25 t^{3} / 6-t^{2}+6 \mathrm{t}(+\mathrm{k})$	A1ft	ft candidates c from part (ii)
	Finds or assumes $\mathrm{k}=0$ and substitutes $\mathrm{t}=4 \mathrm{OR}$ uses limits of 0 and 4	M1	
	$\mathrm{OP}=32 / 3=10 \frac{2}{3}=10.7 \mathrm{~m}$	A1	
		4	

