Question	Answer	Marks	
	$R=2.5 \cos 15$	B1	
	$[F=\mu \times 2.5 \cos 15]$	M1	Using $F=\mu R$
	$[2.5 \sin 15=0.03 g+F]$	M1	Resolve forces along the rod
	$\mu=0.144$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$\left[0=30^{2}+2(-g) s\right]$	M1	Using $v^{2}=u^{2}+2 a s$ with $v=0$, $u=30$ and $a=-g$ For any complete method for finding maximum height s
	$s=$ maximum height $=900 / 20=45 \mathrm{~m}$	A1	AG
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
2(ii)	$\left[33.75=30 t-1 / 2 g t^{2}\right]$	M1	Applying $s=u t+1 / 2 a t^{2}$ with $s=33.75, u=30$ and $a=-g$
	$\left[5 t^{2}-30 t+33.75=0\right.$ or $\left.4 t^{2}-24 t+27=0\right]$	M1	Solve a 3-term quadratic for t
	$t=1.5($ reject $t=4.5)$	A1	
	$v=30-1.5 g=15$	B1ft	Use $v=u+a t$ with $u=30$ and $t=1.5$ ft on t value found
	Alternative method for question 2(ii)		
	$v^{2}=30^{2}-2 g(33.75)=225 \rightarrow v=15$	B1	Use $v^{2}=u^{2}+2 a s$ with $u=30$, $a=-g$ and $s=33.75$ to find v
	$\begin{aligned} & {[33.75=1 / 2(30+15) \times t]} \\ & \text { or }[15=30-10 t] \end{aligned}$	M1	Use $s=1 / 2(u+v) \times t$ with $s=33.75, u=30$ and v as found. or Use $v=u-g t$ with $u=30$ and v as found
		M1	Solve for t
	$t=1.5$	A1ft	ft on v value found
		4	

Question	Answer	Marks	Guidance
3		M1	Attempt to resolve forces horizontally or vertically
	$F \cos \alpha=15 \cos 20-5(=9.095 \ldots)$	A1	
	$F \sin \alpha=15 \sin 20+25(=30.13 \ldots$.	A1	
	$F=\sqrt{(15 \cos 20-5)^{2}+(15 \sin 20+25)^{2}}$	M1	Use Pythagoras or trigonometry to find F
	$\propto=\tan ^{-1}[(15 \sin 20+25) /(15 \cos 20-5)]$	M1	Use trigonometry to find α
	$\alpha=73.2$ and $F=31.5$	A1	
		6	

Question	Answer	Marks	
$4(\mathrm{i})$	Driving force $=6000 / 20[=300 \mathrm{~N}]$	$\mathbf{B 1}$	Using $F=P / v$
	$R=300-80=220$	B1ft	Net force on system $=300-R-220=0 \mathrm{ft}$ on DF found
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4(ii)	[New driving force DF $=12500 / 25=500 \mathrm{~N}$ Car: DF $-T-R=1500 a$ Trailer: $T-80=300 a$ System: DF $-80-R=1800 a]$	M1	Any one equation from the following: Apply Newton's 2nd law to the car Apply Newton's 2nd law to the trailer Apply Newton's 2nd law to the system of car and trailer.
	Two correct equations	A1ft	Correct $\mathrm{DF}=500$ must be used. ft on R value found
		M1	EITHER solve two dimensionally correct simultaneous equations in a and T to find a or T OR solve the system equation to find a
	$a=0.111 \mathrm{~m} \mathrm{~s}^{-2}$	A1	Allow $a=1 / 9$
	$T=113 \mathrm{~N}(=113.3333 \ldots)$	A1	Allow $T=340 / 3$
		5	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	Velocity at $t=3$ is $3 \times 3=9$	B1	
	$[1 / 2 \times 3 \times 9+1 / 2(9+7) \times 2+1 / 2 \times 3 \times 7]$	M1	Attempt distance travelled in the first 8 seconds using Distance $=$ area under graph.
	Distance $=40 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(ii)	[32 $=40+$ area of triangle $]$	M1	Use given displacement to set up equation for area of triangle or attempt to find distance or displacement from $t=8$ to $t=$ 16
	Area of triangle or displacement/distance $=$ $(-) 8$	A1	
	[Distance $=1 / 2 \times 8 \times V=(-) 8]$	M1	Set up an equation for the area of triangle involving V or use suvat equations to set up an equation involving V
	$V=-2$	A1	
		4	

Question	Answer	Marks	Guidance
6 (i)	$\left[\int\left(0.4 t^{3}-4.8 t^{\frac{1}{2}}\right) \mathrm{d} t\right]$	M1	Attempt to integrate a
	$v=0.1 t^{4}-3.2 t^{\frac{3}{2}}(+c)$	A1	
	$\left[v=0 \rightarrow 0.1 t^{4}-3.2 t^{\frac{3}{2}}=0\right]$	DM1	Attempt to solve $v=0$, and reach the form $t^{a / b}=k$
	$\left[t^{\frac{5}{2}}=32\right]$	M1	Attempt to solve an equation of the form $t^{a / b}=k$
	$t=4$	A1	
	$a=16 \mathrm{~m} \mathrm{~s}^{-2}$	B1	
		6	
6(ii)	$\left[s=\int 0.1 t^{4}-3.2 t^{\frac{3}{2}} \mathrm{~d} t\right]$	M1	Attempt to integrate v
	Displacement $=\left[0.02 t^{5}-1.28 t^{\frac{5}{2}}\right]_{0}^{5}$	A1	Correct integration.
	Displacement $=-9.05 \mathrm{~m}(-9.05417 \ldots)$	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$R=0.25 g \times 0.6[=1.5]$	B1	
	$[F=0.5 \times 0.25 g \times 0.6][F=0.75]$	M1	Use $F=\mu R$
	[WD against friction $=F \times 8]$	M1	Using WD $=$ Force \times distance moved in direction of force
	$\mathrm{WD}=6 \mathrm{~J}$	A1	
		4	
7(ii)	$\begin{aligned} & {\left[1 / 2 \times 0.25 \times 15^{2}=\right.} \\ & \left.1 / 2 \times 0.25 \times v^{2}+6+0.25 \mathrm{~g} \times 8 \times 0.8\right] \end{aligned}$	M1	Work-energy equation in the form Initial $\mathrm{KE}=$ Final $\mathrm{KE}+\mathrm{WD}$ against $F+\mathrm{PE}$ gain
		A1 ft	Correct Work-Energy equation for the motion to Q. ft on WD
		M1	Solving the work-energy equation for v
	$v=7 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	Alternative method for question 7(ii)		
	$[-F-0.25 g \sin \alpha=0.25 a]$	M1	Applying Newton's second law to the particle along the plane
	$a=-11 \mathrm{~m} \mathrm{~s}^{-2}$	A1ft	ft on friction found in (i)
		M1	Finding the speed of the particle at Q by applying $v^{2}=u^{2}+$ 2as with $u=15, s=8$ or equivalent complete method
	$v=7 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
7(iii)	$\left[1 / 2 \times 0.25 \times 7^{2}=0.25 \times g \times H\right]$ Or $\left[1 / 2 \times m \times 7^{2}=m \times g \times H\right]$	M1	KE lost from Q to $R=\mathrm{PE}$ gain from Q to R H is the height of R above Q
	$H=7^{2} / 2 g=2.45 \mathrm{~m}$	A1	
	Total height $h=6.4+H=8.85$	A1	
	Alternative method for question 7(iii)		
	$\left[1 / 2 \times 0.25 \times 15^{2}=6+0.25 g \times h\right]$	M1	Work-energy from P to R
		A1	Correct Work-energy equation from P to R
	$h=8.85$	A1	
		3	

