Question	Answer	Marks	Guidance
1	$R = 2.5 \cos 15$	B1	
	$[F = \mu \times 2.5 \cos 15]$	M1	Using $F = \mu R$
	$[2.5 \sin 15 = 0.03g + F]$	M1	Resolve forces along the rod
	$\mu = 0.144$	A1	
		4	

Question	Answer	Marks	Guidance
2(i)	$[0 = 30^2 + 2(-g)s]$	M1	Using $v^2 = u^2 + 2as$ with $v = 0$, u = 30 and $a = -gFor any complete method for finding maximum height s$
	s = maximum height = 900/20 = 45 m	A1	AG
		2	

9709	m19	ms	42
------	-----	----	----

Question	Answer	Marks	Guidance
2(ii)	$[33.75 = 30t - \frac{1}{2}gt^2]$	M1	Applying $s = ut + \frac{1}{2}at^2$ with $s = 33.75$, $u = 30$ and $a = -g$
	$[5t^2 - 30t + 33.75 = 0 \text{ or } 4t^2 - 24t + 27 = 0]$	M1	Solve a 3-term quadratic for <i>t</i>
	t = 1.5 (reject $t = 4.5$)	A1	
	v = 30 - 1.5g = 15	B1ft	Use $v = u + at$ with $u = 30$ and t = 1.5 ft on t value found
	Alternative method	l for questi	ion 2(ii)
	$v^2 = 30^2 - 2g(33.75) = 225 \rightarrow v = 15$	B1	Use $v^2 = u^2 + 2as$ with $u = 30$, a = -g and $s = 33.75$ to find v
	$[33.75 = \frac{1}{2} (30 + 15) \times t]$ or $[15 = 30 - 10t]$	M1	Use $s = \frac{1}{2}(u + v) \times t$ with $s = 33.75$, $u = 30$ and v as found. or Use $v = u - gt$ with $u = 30$ and v as found
		M1	Solve for <i>t</i>
	t = 1.5	A1ft	ft on <i>v</i> value found
		4	

9709 m19 ms 4	42
---------------	----

Question	Answer	Marks	Guidance
3		M1	Attempt to resolve forces horizontally or vertically
	$F \cos \alpha = 15 \cos 20 - 5 (= 9.095)$	A1	
	$F \sin \alpha = 15 \sin 20 + 25 (= 30.13)$	A1	
	$F = \sqrt{\left(15\cos 20 - 5\right)^2 + \left(15\sin 20 + 25\right)^2}$	M1	Use Pythagoras or trigonometry to find F
	$\infty = \tan^{-1} \left[\frac{(15\sin 20 + 25)}{(15\cos 20 - 5)} \right]$	M1	Use trigonometry to find α
	$\alpha = 73.2$ and $F = 31.5$	A1	
		6	

Question	Answer	Marks	Guidance
4(i)	Driving force = 6000/20 [= 300 N]	B1	Using $F = P/v$
	R = 300 - 80 = 220	B1ft	Net force on system = $300 - R - 220 = 0$ ft on DF found
		2	

9709	m19	ms	42

Question	Answer	Marks	Guidance
4(ii)	[New driving force DF = $12500/25 = 500$ N Car: DF - T - R = $1500a$ Trailer: T - $80 = 300a$ System: DF - $80 - R = 1800a$]	M1	Any one equation from the following: Apply Newton's 2nd law to the car Apply Newton's 2nd law to the trailer Apply Newton's 2nd law to the system of car and trailer.
	Two correct equations	A1ft	Correct DF = 500 must be used. ft on R value found
		M1	EITHER solve two dimensionally correct simultaneous equations in a and T to find a or T OR solve the system equation to find a
	$a = 0.111 \text{ m s}^{-2}$	A1	Allow $a = 1/9$
	T = 113 N (= 113.3333)	A1	Allow $T = 340/3$
		5	

Question	Answer	Marks	Guidance
5(i)	Velocity at $t = 3$ is $3 \times 3 = 9$	B1	
	$[\frac{1}{2} \times 3 \times 9 + \frac{1}{2} (9+7) \times 2 + \frac{1}{2} \times 3 \times 7]$	M1	Attempt distance travelled in the first 8 seconds using Distance = area under graph.
	Distance = 40 m	A1	
		3	

Question	Answer	Marks	Guidance
5(ii)	[32 = 40 + area of triangle]	M1	Use given displacement to set up equation for area of triangle or attempt to find distance or displacement from $t = 8$ to $t = 16$
	Area of triangle or displacement/distance = (-)8	A1	
	$[\text{Distance} = \frac{1}{2} \times 8 \times V = (-)8]$	M1	Set up an equation for the area of triangle involving <i>V</i> or use <i>suvat</i> equations to set up an equation involving <i>V</i>
	<i>V</i> = -2	A1	
		4	

March 2019

9709 m19 ms 42

Question	Answer	Marks	Guidance
6(i)	$\left[\int \left(0.4t^3 - 4.8t^{\frac{1}{2}}\right) \mathrm{d}t\right]$	M1	Attempt to integrate a
	$v = 0.1t^4 - 3.2t^{\frac{3}{2}} (+c)$	A1	
	$[v = 0 \to 0.1t^4 - 3.2t^{\frac{3}{2}} = 0]$	DM1	Attempt to solve $v = 0$, and reach the form $t^{a/b} = k$
	$[t^{\frac{5}{2}} = 32]$	M1	Attempt to solve an equation of the form $t^{a/b} = k$
	t = 4	A1	
	$a = 16 \text{ m s}^{-2}$	B1	
		6	
6(ii)	$[s = \int 0.1t^4 - 3.2t^{\frac{3}{2}} dt]$	M1	Attempt to integrate v
	Displacement = $\left[0.02t^5 - 1.28t^{\frac{5}{2}}\right]_0^5$	A1	Correct integration.
	Displacement = $-9.05 \text{ m} (-9.05417)$	A1	
		3	

Question	Answer	Marks	Guidance		
-	$R = 0.25g \times 0.6$ [= 1.5]	B1			
7(i)		DI			
	$[F = 0.5 \times 0.25g \times 0.6] [F = 0.75]$	M1	Use $F = \mu R$		
	[WD against friction = $F \times 8$]	M1	Using WD = Force \times distance moved in direction of force		
	WD = 6 J	A1			
		4			
7(ii)	$[\frac{1}{2} \times 0.25 \times 15^2 =$	M1	Work-energy equation in the form		
	$\frac{1}{2} \times 0.25 \times v^2 + 6 + 0.25g \times 8 \times 0.8$]		Initial KE = Final KE + WD against F + PE gain		
		A1ft	Correct Work–Energy equation for the motion to <i>Q</i> . ft on WD		
		M1	Solving the work-energy equation for <i>v</i>		
	$v = 7 \text{ m s}^{-1}$	A1			
	Alternative method for question 7(ii)				
	$[-F - 0.25g\sin\alpha = 0.25a]$	M1	Applying Newton's second law to the particle along the plane		
	$a = -11 \text{ m s}^{-2}$	A1ft	ft on friction found in (i)		
		M1	Finding the speed of the particle at Q by applying $v^2 = u^2 + 2as$ with $u = 15$, $s = 8$ or equivalent complete method		
	$v = 7 \text{ m s}^{-1}$	A1			
		4			

9709	9 m1	9 ms	42

Question	Answer	Marks	Guidance		
7(iii)	$\begin{bmatrix} 1/2 \times 0.25 \times 7^2 = 0.25 \times g \times H \end{bmatrix}$ Or $\begin{bmatrix} 1/2 \times m \times 7^2 = m \times g \times H \end{bmatrix}$	M1	KE lost from Q to R = PE gain from Q to R H is the height of R above Q		
	$H = 7^2/2g = 2.45 \text{ m}$	A1			
	Total height $h = 6.4 + H = 8.85$	A1			
	Alternative method for question 7(iii)				
	$[\frac{1}{2} \times 0.25 \times 15^2 = 6 + 0.25g \times h]$	M1	Work-energy from <i>P</i> to <i>R</i>		
		A1	Correct Work-energy equation from <i>P</i> to <i>R</i>		
	h = 8.85	A1			
		3			