Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1(i)	Use law for the logarithm of a product or quotient	M1	
	Use $\log_{10} 100 = 2$ or $10^2 = 100$	M1	
	Obtain $x^2 - 4x - 100 = 0$, or equivalent	A1	
		3	
1(ii)	Solve a 3-term quadratic equation	M1	
	Obtain answer 12.2 only	A1	
		2	

Question	Answer	Marks	Guidance
2(i)	Use the iterative formula correctly at least once	M1	
	Obtain answer 1.3195	A1	
	Show sufficient iterations to 6 d.p. to justify 1.3195 to 4 d.p., or show there is a sign change in (1.31945, 1.31955)	A1	
		3	
2(ii)	State $x = \frac{2x^6 + 12x}{3x^5 + 8}$, or equivalent	B1	
	State answer $\sqrt[5]{4}$, or exact equivalent	B1	
		2	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	Use trig formulae and obtain an equation in sin θ and cos θ	M1	
	Obtain a correct equation in any form	A1	
	Substitute exact trig ratios and obtain an expression for tan θ	M1	
	Obtain answer $\tan \theta = \frac{2\sqrt{2}-1}{1-\sqrt{6}}$, or equivalent	A1	
		4	
3(ii)	State answer, e.g. $\theta = 128.4^{\circ}$	B1	
	State second answer, e.g. $\theta = 308.4^{\circ}$	B1 ft	
		2	

Question	Answer	Marks	Guidance
4	Integrate by parts and reach $ax^{-\frac{1}{2}} \ln x + b \int x^{-\frac{1}{2}} \cdot \frac{1}{x} dx$	M1*	
	Obtain $-2x^{-\frac{1}{2}} \ln x + 2 \int x^{-\frac{1}{2}} \cdot \frac{1}{x} dx$, or equivalent	A1	
	Complete the integration, obtaining $-2x^{-\frac{1}{2}} \ln x - 4x^{-\frac{1}{2}}$, or equivalent	A1	
	Substitute limits correctly, having integrated twice	M1(dep*)	
	Obtain the given answer following full and correct working	A1	
		5	

Cambridge International A Level – Mark Scheme **PUBLISHED**

March 2019

9709_m19_ms_32

Question	Answer	Marks	Guidance
5	State $\cos y \frac{\mathrm{d}y}{\mathrm{d}x}$ as derivative of $\sin y$	B1	
	State correct derivative in terms of x and y, e.g. $\sec^2 x / \cos y$	B1	
	State correct derivative in terms of x, e.g. $\frac{\sec^2 x}{\sqrt{1 - \tan^2 x}}$	B1	
	Use double angle formula	M1	
	Obtain the given answer correctly	A1	
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6	Separate variables correctly and attempt integration of at least one side	B1	
	Obtain term $-\frac{1}{2y^2}$, or equivalent	B1	
	Obtain term – $k e^{-x}$	B1	
	Use a pair of limits, e.g. $x = 0$, $y = 1$ to obtain an equation in k and an arbitrary constant c	M1	
	Use a second pair of limits, e.g. $x = 1$, $y = \sqrt{e}$, to obtain a second equation and solve for k or for c	M1	
	Obtain $k = \frac{1}{2}$ and $c = 0$	A1	
	Obtain final answer $y = e^{\frac{1}{2}x}$, or equivalent	A1	
		7	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(a)	Use quadratic formula to solve for z	M1	
	Use $i^2 = -1$ throughout	M1	
	Obtain correct answer in any form	A1	
	Multiply numerator and denominator by $1 - i$, or equivalent	M1	
	Obtain final answer, e.g. 1 – i	A1	
	Obtain second final answer, e.g. $\frac{5}{2} + \frac{1}{2}i$	A1	
		6	
7(b)	Show the point representing <i>u</i> in relatively correct position	B1	
	Show the horizontal line through $z = i$	B1	
	Show correct half-lines from u , one of gradient 1 and the other vertical	B1ft	
	Shade the correct region	B1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

March 2019

9709 m19 ms 32

Question	Answer	Marks	Guidance
8(i)	State or imply the form $A + \frac{B}{2+x} + \frac{C}{3-2x}$	B1	
	Use a correct method for finding a constant	M1	
	Obtain one of $A = 2$, $B = -4$ and $C = 6$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
8(ii)	Use correct method to find the first two terms of the expansion of $(2+x)^{-1}$ or $(3-2x)^{-1}$, or equivalent	M1	
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A1ft +A1ft	The ft is on <i>B</i> and <i>C</i>
	Add the value of A to the sum of the expansions	M1	
	Obtain final answer $2 + \frac{7}{3}x + \frac{7}{18}x^2$	A1	
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
9(i)	State or imply a correct normal vector to either plane, e.g. $2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$, or $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$	B1	
	Carry out correct process for evaluating the scalar product of two normal vectors	M1	
	Using the correct process for the moduli, divide the scalar product of the two normal vectors by the product of their moduli and evaluate the inverse cosine of the result	M1	
	Obtain answer 56.9° or 0.994 radians	A1	
		4	
9(ii)	<i>EITHER</i> : Carry out a complete strategy for finding a point on the line (call the line <i>l</i>)	M1	
	Obtain such a point, e.g. (1, 1, 4)	A1	
	<i>EITHER</i> : State a correct equation for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for <i>l</i> , e.g. $2a + 3b - c = 0$	B1	
	State a second equation, e.g. $a - 2b + c = 0$, and solve for one ratio, e.g. $a : b$	M1	
	Obtain $a: b: c = 1: -3: -7$, or equivalent	A1	
	State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} - 7\mathbf{k})$	A1	
	<i>OR</i> 1: Attempt to calculate the vector product of the two normal vectors	M1	
	Obtain two correct components	A1	
	Obtain $\mathbf{i} - 3\mathbf{j} - 7\mathbf{k}$, or equivalent	A1	
	State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} - 7\mathbf{k})$, or equivalent	A1	

Cambridge International A Level – Mark Scheme PUBLISHED

Question		Answer	Marks	Guidance
9(ii)		<i>OR2</i> : Obtain a second point on l e.g. $(0, 4, 11)$	B1	
		Subtract position vectors and obtain a direction vector for <i>l</i>	M1	
		Obtain $\mathbf{i} - 3\mathbf{j} - 7\mathbf{k}$, or equivalent	A1	
		State a correct answer, e.g. $\mathbf{r} = 4\mathbf{j} + 11\mathbf{k} + \mu(\mathbf{i} - 3\mathbf{j} - 7\mathbf{k})$, or equivalent	A1	
	<i>OR</i> 3:	Express one variable in terms of a second	M1	
		Obtain a correct simplified expression, e.g. $y = 4 - 3x$	A1	
		Express the third variable in terms of the second	M1	
		Obtain a correct simplified expression, e.g. $z = 11 - 7x$	A1	
		Form a vector equation for the line	M1	
		State a correct answer, e.g. $\mathbf{r} = 4\mathbf{j} + 11\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} - 7\mathbf{k})$, or equivalent	A1	
			6	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
9(ii)	<i>OR</i> 4: Express one variable in terms of a second	M1	
	Obtain a correct simplified expression, e.g. $x = \frac{4}{3} - \frac{y}{3}$	A1	
	Express the same variable in terms of the third	M1	
	Obtain a correct simplified expression, e.g. $x = \frac{11}{7} - \frac{z}{7}$	A1	
	Form a vector equation for the line	M1	
	Obtain a correct answer, e.g. $\mathbf{r} = 4\mathbf{j} + 11\mathbf{k} + \mu(\mathbf{i} - 3\mathbf{j} - 7\mathbf{k})$, or equivalent	A1	
		6	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
10(i)	State or imply $du = -\sin x dx$	B1	
	Using Pythagoras express the integral in terms of <i>u</i>	M1	
	Obtain integrand $\pm \sqrt{u} (1-u^2)$	A1	
	Integrate and obtain $-\frac{2}{3}u^{\frac{3}{2}} + \frac{2}{7}u^{\frac{7}{2}}$, or equivalent	A1	
	Change limits correctly and substitute correctly in an integral of the form $au^{\frac{3}{2}} + bu^{\frac{7}{2}}$	M1	Or substitute original limits correctly in an integral of the form $a(\cos x)^{\frac{3}{2}} + b(\cos x)^{\frac{7}{2}}$
	Obtain answer $\frac{8}{21}$	A1	
		6	
10(ii)	Use product rule and chain rule at least once	M1	
	Obtain correct derivative in any form	A1 + A1	
	Equate derivative to zero and obtain a horizontal equation in integral powers of $\sin x$ and $\cos x$	M1	
	Use correct methods to obtain an equation in one trig function	M1	
	Obtain $\tan^2 x = 6$, $7\cos^2 x = 1$ or $7\sin^2 x = 6$, or equivalent, and obtain answer 1.183	A1	
		6	