Question	Answer	Marks	Guidance
1	Use identity $\sec ^{2} \theta=1+\tan ^{2} \theta$	B1	
	Attempt solution of quadratic equation to find two values of $\tan \theta$	M1	
	Obtain $\tan \theta=-\frac{1}{2}, 3$	A1	
	Obtain 71.6 and 153.4 and no others between 0 and 180	A1	
		4	

Question	Answer	Marks	Guidance
2	Solve non-modular equation $(2 x+3)^{2}=(2 x-1)^{2}$ or linear equation with signs of $2 x$ different	M1	
	Obtain $x=-\frac{1}{2}$	A1	
	Substitute negative value into expression and show correct evaluation of modulus at least once	M1	
	Obtain $5-3=2$ with no errors seen	A1	
		4	

Question	Answer	Marks	Guidance
3	State or imply equation is $\ln y=\ln A+p x+p$	B1	
	Equate gradient of line to p	M1	
	Obtain $p=0.75$	A1	
	Substitute appropriate values to find $\ln A$	M1	
	Obtain $\ln A=1.335 \ldots$ and hence $A=3.8$	A1	
		5	

Question	Answer	Marks	Guidance
4(i)	Carry out division at least as far as $2 x^{2}+k x$	M1	
	Obtain quotient $2 x^{2}+3 x+4$	A1	
	Confirm remainder is 5	A1	Answer given; necessary detail needed
		3	
4(ii)	State or imply equation is $(2 x+1)\left(2 x^{2}+3 x+4\right)=0$	B1	FT their quotient from part (i)
	Calculate discriminant of 3-term quadratic expression or equivalent	M1	
	Obtain -23 or equiv and conclude appropriately	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	Attempt rearrangement of $\frac{\mathrm{e}^{2 x}}{4 x+1}=10$ to $x=\ldots$ involving \ln	M1	
	Confirm $x=\frac{1}{2} \ln (40 x+10)$	A1	Answer given; necessary detail needed
		2	
5(ii)	Use iteration process correctly at least once	M1	
	Obtain final answer 2.316	A1	
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval [$2.3155,2.3165$]	A1	
		3	
5(iii)	Use quotient rule (or product rule) to find derivative	M1	
	Obtain $\frac{2 \mathrm{e}^{2 x}(4 x+1)-4 \mathrm{e}^{2 x}}{(4 x+1)^{2}}$ or equivalent	A1	
	Substitute answer from part (ii) (or more accurate value) into attempt at first derivative	M1	
	Obtain 16.1	A1	
		4	

Question	Answer	Marks	Guidance
6(a)	Integrate to obtain form $k_{1} \ln x+k_{2} \ln (2 x+1)$	M1	
	Obtain correct $2 \ln x+\ln (2 x+1)$	A1	
	Use logarithm addition/subtraction property correctly	M1	
	Use logarithm power property correctly	M1	
	Confirm $\ln 48$ with no errors seen	A1	Answer given; necessary detail needed
		5	
6(b)	Use identity $\sin 2 x=2 \sin x \cos x$	B1	
	State or imply $\cot x+2 \operatorname{cosec} x=\frac{\cos x}{\sin x}+\frac{2}{\sin x}$	B1	
	Attempt to express integrand in terms of $\cos 2 x$ and $\cos x$	M1	
	Obtain correct integrand $1+\cos 2 x+4 \cos x$	A1	
	Integrate to obtain at least terms $k_{3} \sin 2 x$ and $k_{4} \sin x$	M1	
	Obtain correct $x+\frac{1}{2} \sin 2 x+4 \sin x+c$	A1	
		6	

Question	Answer	Marks	Guidance
7(i)	Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=2-2 \cos 2 t$	B1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=5-2 \sin 2 t$	B1	
	Equate attempt at $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 2 and rearrange	M1	
	Confirm equation $2 \sin 2 t-4 \cos 2 t=1$	A1	Answer given; necessary detail needed
		4	
7(ii)	State $R=\sqrt{20}$ or 4.47	B1	
	Use appropriate trigonometry to find α	M1	
	Obtain $\alpha=1.107$ with no errors seen	A1	
	Carry out correct method to find value of t	M1	
	Obtain $t=0.666$	A1	
	Substitute value of t between 0 and $\frac{1}{2} \pi$ into expressions for x and y	M1	
	Obtain $x=0.361, \quad y=3.57$	A1	
		7	

