Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	Use identity $\sec^2 \theta = 1 + \tan^2 \theta$	B1	
	Attempt solution of quadratic equation to find two values of $\tan \theta$	M1	
	Obtain $\tan \theta = -\frac{1}{2}$, 3	A1	
	Obtain 71.6 and 153.4 and no others between 0 and 180	A1	
		4	

Question	Answer	Marks	Guidance
2	Solve non-modular equation $(2x+3)^2 = (2x-1)^2$ or linear equation with signs of 2x different	M1	
	Obtain $x = -\frac{1}{2}$	A1	
	Substitute negative value into expression and show correct evaluation of modulus at least once	M1	
	Obtain $5-3=2$ with no errors seen	A1	
		4	

Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3	State or imply equation is $\ln y = \ln A + px + p$	B1	
	Equate gradient of line to p	M1	
	Obtain $p = 0.75$	A1	
	Substitute appropriate values to find ln A	M1	
	Obtain $\ln A = 1.335$ and hence $A = 3.8$	A1	
		5	

Question	Answer	Marks	Guidance
4(i)	Carry out division at least as far as $2x^2 + kx$	M1	
	Obtain quotient $2x^2 + 3x + 4$	A1	
	Confirm remainder is 5	A1	Answer given; necessary detail needed
		3	
4(ii)	State or imply equation is $(2x+1)(2x^2+3x+4) = 0$	B1	FT their quotient from part (i)
	Calculate discriminant of 3-term quadratic expression or equivalent	M1	
	Obtain –23 or equiv and conclude appropriately	A1	
		3	

9709/22

Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	Attempt rearrangement of $\frac{e^{2x}}{4x+1} = 10$ to $x =$ involving ln	M1	
	$Confirm \ x = \frac{1}{2}\ln(40x + 10)$	A1	Answer given; necessary detail needed
		2	
5(ii)	Use iteration process correctly at least once	M1	
	Obtain final answer 2.316	A1	
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval [2.3155, 2.3165]	A1	
		3	
5(iii)	Use quotient rule (or product rule) to find derivative	M1	
	Obtain $\frac{2e^{2x}(4x+1) - 4e^{2x}}{(4x+1)^2}$ or equivalent	A1	
	Substitute answer from part (ii) (or more accurate value) into attempt at first derivative	M1	
	Obtain 16.1	A1	
		4	

9709/22

Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(a)	Integrate to obtain form $k_1 \ln x + k_2 \ln(2x+1)$	M1	
	Obtain correct $2 \ln x + \ln(2x+1)$	A1	
	Use logarithm addition/subtraction property correctly	M1	
	Use logarithm power property correctly	M1	
	Confirm ln 48 with no errors seen	A1	Answer given; necessary detail needed
		5	
6(b)	Use identity $\sin 2x = 2\sin x \cos x$	B1	
	State or imply $\cot x + 2 \csc x = \frac{\cos x}{\sin x} + \frac{2}{\sin x}$	B1	
	Attempt to express integrand in terms of $\cos 2x$ and $\cos x$	M1	
	Obtain correct integrand $1 + \cos 2x + 4\cos x$	A1	
	Integrate to obtain at least terms $k_3 \sin 2x$ and $k_4 \sin x$	M1	
	Obtain correct $x + \frac{1}{2}\sin 2x + 4\sin x + c$	A1	
		6	

9709/22

Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(i)	Obtain $\frac{dx}{dt} = 2 - 2\cos 2t$	B1	
	Obtain $\frac{dy}{dt} = 5 - 2\sin 2t$	B1	
	Equate attempt at $\frac{dy}{dx}$ to 2 and rearrange	M1	
	Confirm equation $2\sin 2t - 4\cos 2t = 1$	A1	Answer given; necessary detail needed
		4	
7(ii)	State $R = \sqrt{20}$ or 4.47	B1	
	Use appropriate trigonometry to find α	M1	
	Obtain $\alpha = 1.107$ with no errors seen	A1	
	Carry out correct method to find value of <i>t</i>	M1	
	Obtain $t = 0.666$	A1	
	Substitute value of t between 0 and $\frac{1}{2}\pi$ into expressions for x and y	M1	
	Obtain $x = 0.361$, $y = 3.57$	A1	
		7	