Question	Answer	Marks	
1	$5 \mathrm{C} 3\left[(-)(p x)^{3}\right]$ soi	B1	Can be part of expansion. Condone omission of - sign
	$(-1) 10 p^{3}=-2160$ then \div and cube root	M1	Condone omission of - sign.
	$p=6$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	
2	$y=1 / 3 k x^{3}-x^{2}(+c)$	M1A1	Attempt integration for M mark
	Sub $(0,2)$	DM1	Dep on c present. Expect $c=2$
	Sub $(3,-1) \rightarrow-1=9 k-9+$ their c	DM1	
	$k=2 / 3$	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
3	Angle $C B A=\sin ^{-1}\left(\frac{7}{8}\right)=1.0654$ or $C B D=\cos ^{-1}\left(\frac{-17}{32}\right)=2.13$	B1	Accept $61.0^{\circ}, 66^{\circ}$ or 122°
	Sector $B C Y D=1 / 2 \times 8^{2} \times 2 \times$ their $1.0654(\mathrm{rad})$ soi or sector $\mathrm{CBY}=1 / 2 \times 8^{2} \times$ their $1.0654(\mathrm{rad})$	M1	Expect 68.1(9). Angle must be in radians (or their $61 / 360 \times 2 \times 8^{2}$) Or sector DBY
	$\triangle B C D=7 \times \sqrt{8^{2}-7^{2}}$ or $1 / 2 \times 8^{2} \times \sin (2 \times$ their 1.0654$)$ soi	M1	Expect 27.1(1). Award M1 for ABC or ABD
	Semi-circle $C X D=1 / 2 \pi \times 7^{2}=76.9(7)$	M1	M1M1 for segment area formula used correctly
	Total area $=$ their $68.19-$ their $27.11+$ their $76.97=118.0-118.1$	M1A1	Cannot gain M1 without attempt to find angle CBA or CBD
		6	

Question	Answer	Marks	Guidance
4(i)	$\mathrm{d} y / \mathrm{d} x=-2(2 x-1)^{-2}+2$	B2,1,0	Unsimplified form ok (-1 for each error in ' -2 ', ' $(2 x-1)^{-2}$, and ' 2 ')
	$\mathrm{d}^{2} y / \mathrm{d} x^{2}=8(2 x-1)^{-3}$	B1	Unsimplified form ok
		3	

Question	Answer	Marks	Guidance
$4(\mathrm{ii})$	Set $\mathrm{d} y / \mathrm{d} x$ to zero and attempt to solve - at least one correct step	M1	
	$x=0,1$	A1	Expect $(2 x-1)^{2}=1$
	When $x=0, \mathrm{~d}^{2} y / \mathrm{d} x^{2}=-8($ or $<0)$. Hence MAX	B1	
	When $x=1, \mathrm{~d}^{2} y / \mathrm{d} x^{2}=8($ or $>0)$. Hence MIN	Both final marks dependent on correct x and correct $d^{2} y / d x^{2}$ and no errors May use change of sign of dy $/ \mathrm{dx}$ but not at $x=1 / 2$	
		4	

Question	Answer	Marks	
$5(\mathrm{i})$	u.v $=8 q+2 q-2+6 q^{2}-42$	$\mathbf{B 1}$	May be unsimplified
	$6 q^{2}+10 q-44=0$ oe	M1	Simplify, set to zero and attempt to solve
	$q=2,-11 / 3$	$\mathbf{A 1}$	Both required. Accept -3.67
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(ii)	$\mathbf{u}=\left(\begin{array}{l}0 \\ 2 \\ 6\end{array}\right) \mathbf{v}=\left(\begin{array}{c}8 \\ -1 \\ -7\end{array}\right) \mathbf{u . v}=-2-42$	M1	Correct method for scalar product
	$\|\mathbf{u}\| \times\|\mathbf{v}\|=\sqrt{2^{2}+6^{2}} \times \sqrt{8^{2}+1^{2}+7^{2}}$	M1	Prod of mods. At least one methodically correct.
	$\cos \theta=\frac{-44}{\sqrt{40} \times \sqrt{114}}=\frac{-44}{4 \sqrt{285}}=\frac{-4}{\sqrt{11}}$	M1	All linked correctly and inverse cos used correctly
	$\theta=130.7^{\circ}$ or $2.28(05)$ rads	A1	No other angles between 0° and 180°
		4	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	$S_{n}=\frac{p\left(2^{n}-1\right)}{2-1}$ soi	M1	
	$p\left(2^{n}-1\right)>1000 p \rightarrow 2^{n}>1001$ AG	A1	
		$\mathbf{2}$	

Question	Answer	Marks	
$6($ ii)	$p+(n-1) p=336$	$\mathbf{B 1}$	Expect $n p=336$
	$\frac{n}{2}[2 p+(n-1) p]=7224$	$\mathbf{B 1}$	Expect $\frac{n}{2}(p+n p)=7224$
	Eliminate n or p to an equation in one variable	M1	Expect e.g. $168(1+n)=7224$ or $1+336 / p=43$ etc
	$n=42, p=8$	$\mathbf{A 1 A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
7(a)	$3\left(1-\cos ^{2} 2 \theta\right)+8 \cos 2 \theta=0 \rightarrow 3 \cos ^{2} 2 \theta-8 \cos 2 \theta-3(=0)$	M1	Use $s^{2}=1-c^{2}$ and simplify to 3-term quadratic in 2θ
	$\cos 2 \theta=-\frac{1}{3} \text { soi }$	A1	Ignore other solution
	$2 \theta=109 .(47)^{\text {o }}$ or $250 .(53)^{\circ}$	A1	One solution is sufficient, may be implied by either of the next solns
	$\theta=54.7^{\circ}$ or 125.3°	A1A1ft	Ft for 180° - other solution Use of double angles leads to $3 c^{4}-7 c^{2}+2=0 \Rightarrow c= \pm 1 / \sqrt{ } 3$ for M1A1A1 then A1A1 for each angle Similar marking if $3 \sin ^{2} 2 \theta=-8 \cos 2 \theta$ is squared leading to $9 \sin ^{4} 2 \theta+64 \sin ^{2} 2 \theta-64=0$
		5	

Question	Answer	Marks	Guidance
7(b)	$\sqrt{ } 3=a+\tan 0 \rightarrow a=\sqrt{ } 3$	B1	$b=8$ or -4 (or $-10,14 \mathrm{etc})$ scores M1A0
	$0=\tan (-b \pi / 6)+\sqrt{ } 3$ taken as far as $\tan ^{-1}$, angle units consistent	M1	A0 if $\tan ^{-1}(-\sqrt{3})$ is not exact; $(b=2$ no working scores B2)
	$b=2$	A1	
		3	

Question	Answer	Marks	Guidance
8(i)	$\left[(x-2)^{2}\right]+[3]$	B1 DB1	2nd B1 dependent on ± 2 in 1st bracket
		2	
8(ii)	Largest k is 2 Accept $k \leqslant 2$	B1	Must be in terms of k
		1	
8(iii)	$y=(x-2)^{2}+3 \Rightarrow x-2=(\pm) \sqrt{y-3}$	M1	
	$\Rightarrow \mathrm{f}^{-1}(x)=2-\sqrt{x-3}$ for $x>4$	A1B1	
		3	

Question	Answer	Marks	
$8(\mathrm{iv})$	$\operatorname{gf}(x)=\frac{2}{x^{2}-4 x+7-1}=\frac{2}{(x-2)^{2}+2}$	B1	Either form
	Since $\mathrm{f}(\mathrm{x})>4 \Rightarrow \operatorname{gf}(\mathrm{x})<2 / 3($ or since $x<1 \mathrm{etc})$	M1A1	$2 / 3$ in answer implies M1 www
	range of $\operatorname{gf}(x)$ is $0<\operatorname{gf}(x)(<2 / 3)$	B1	Accept $0<y<2 / 3,(0,2 / 3)$ but $0<x<2 / 3$ is SCM1A1B0
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$9(\mathrm{i})$	$V=(\pi) \int\left(x^{3}+x^{2}\right)(\mathrm{d} x)$	M1	Attempt $\int y^{2} \mathrm{~d} x$
	$(\pi)\left[\frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{3}$	$\mathbf{A 1}$	
	$(\pi)\left[\frac{81}{4}+9(-0)\right]$	DM1	May be implied by a correct answer
	$\frac{117 \pi}{4}$ oe	A1	Accept 91.9 If additional areas rotated about x-axis, maximum of M1A0DM1A0

Question	Answer	Marks	
$9(\mathrm{ii})$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(x^{3}+x^{2}\right)^{-1 / 2} \times\left(3 x^{2}+2 x\right)$	$\mathbf{B 2 , 1 , 0}$	Omission of $3 x^{2}+2 x$ is one error
	$($ At $x=3) y=6$,	B1	
	At $x=3, m=\frac{1}{2} \times \frac{1}{6} \times 33=\frac{11}{4}$ soi	DB1ft	Ft on their dy / dx providing differentiation attempted
	Equation of normal is $y-6=-\frac{4}{11}(x-3)$	DM1	Equation through $(3$, their 6$)$ and with gradient $-1 /$ their m
	When $x=0, y=7 \frac{1}{11}$ oe	A1	

Question	Answer	Marks	Guidance
10(i)	$\begin{aligned} & 4 x^{1 / 2}=x+3 \rightarrow \\ & \left(x^{1 / 2}\right)^{2}-4 x^{1 / 2}+3(=0) \text { OR } 16 x=x^{2}+6 x+9 \end{aligned}$	M1	Eliminate y from the 2 equations and then: Either treat as quad in $x^{1 / 2}$ OR square both sides and RHS is 3-term
	$x^{1 / 2}=1$ or $3 x^{2}-10 x+9(=0)$	A1	If in 1st method $x^{1 / 2}$ becomes x, allow only M1 unless subsequently squared
	$x=1$ or 9	A1	
	$y=4$ or 12	A1ft	Ft from their x values If the 2 solutions are found by trial substitution B1 for the first coordinate and B3 for the second coordinate
	$A B^{2}=(9-1)^{2}+(12-4)^{2}$	M1	
	$A B=\sqrt{128}$ or $8 \sqrt{2}$ oe or 11.3	A1	
		6	
10(ii)	$\mathrm{d} y / \mathrm{d} x=2 x^{-1 / 2}$	B1	
	$2 x^{-1 / 2}=1$	M1	Set their derivative $=$ their gradient of $A B$ and attempt to solve
	$(4,8)$	A1	Alternative method without calculus: $\mathrm{M}_{\mathrm{AB}}=1$, tangent is $y=\mathrm{m} x+\mathrm{c}$ where $\mathrm{m}=1$ and meets $y=4 x^{1 / 2}$ when $4 x^{1 / 2}=x+\mathrm{c}$. This is a quadratic with $\mathrm{b}^{2}=4 \mathrm{ac}$, so $16-4 \times 1 \times c=0$ so $\mathrm{c}=4$ B1 Solving $4 x^{1 / 2}=x+4$ gives $x=4$ and $y=8 \mathrm{M} 1 \mathrm{~A} 1$
		3	

Question	Answer	Marks	Guidance
$10($ iii $)$	Equation of normal is $y-8=-1(x-4)$	$\mathbf{M 1}$	Equation through their T and with gradient $-1 /$ their gradient of AB. Expect $y=-x+12$,
	Eliminate $y($ or $x) \rightarrow-x+12=x+3$ or $y-3=12-y$	M1	May use their equation of $A B$
	$(41 / 2,71 / 2)$	$\mathbf{A 1}$	
		$\mathbf{3}$	

