Question	Answer	Marks	Guidance		
1	$\frac{5-4.9}{\frac{2.21}{\sqrt{75}}}$	$(=0.392)$	M1		Correct stand'n. Must have $\sqrt{ } 75$
:---					

Question	Answer	Marks	Guidance
2	$\lambda=98.4$	B1	
	$\mathrm{N}(98.4,98.4)$ seen or implied	B1	
	$\frac{90.5-998.4 "}{\sqrt{" 98.4 "}} \quad(=-0.796)$	M1	allow with wrong or no cc. No sd/var mix.
	ф("0.796")	M1	Correct area consistent with working
	$=0.787$ (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
3(i)	$\mathrm{E}\left(H_{A}\right)=6$	B1	
	$\operatorname{Var}\left(H_{A}\right)=5 \times 0.03^{2}$	M1	
	$=0.0045$ or $9 / 2000$	A1	
		3	
3(ii)	$\mathrm{E}\left(H_{A}-2 H_{B}\right)=0$	B1	From 6-6
	$\operatorname{Var}\left(H_{A}-2 H_{B}\right)={ }^{\prime} 0.0045{ }^{\prime}+4 \times 5 \times 0.02^{2}$	M2	Allow M1 for ' 0.0045 ' $-4 \times 5 \times 0.02^{2}$ or ${ }^{\prime} 0.0045^{\prime}+2 \times 5 \times 0.02^{2}$ or ${ }^{\prime} 0.0045^{\prime}$ $+4 \times 0.02^{2}$ or ${ }^{\prime} 0.0045^{\prime}+4 \times 5^{2} \times 0.02^{2}$
	$=0.0125(3 \mathrm{sf})$ or $1 / 80$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	(Po)(2.4)	B1	seen or implied
	$\mathrm{e}^{-2.4}\left(1+2.4+\frac{2.4^{2}}{2}+\frac{2.4^{3}}{3!}\right)$	M1	allow $+\mathrm{P}(4) /$ one end error. Allow wrong λ
	$=0.779$ (3 sfs)	A1	Final answer (Note: accept combination method)
		3	
4(ii)	$\begin{aligned} & \mathrm{H}_{0}: \lambda(\text { or mean })=3.6(\text { or } 0.9) \\ & \mathrm{H}_{1}: \lambda(\text { or mean })<3.6(\text { or } 0.9) \end{aligned}$	B1	Accept μ for both
	$\mathrm{e}^{-3.6}(1+3.6)$	M1	Allow any λ
	$=0.126$	A1	
	$0.126>0.1$	M1	Valid comparison. (Comparison with 0.9 could recover previous M1A1)
	No evidence that fewer than usual sold	A1FT	Correct conclusion. No contradictions
		5	

Question	Answer	Marks	Guidance
5(i)	$\mathrm{H}_{0}: \mathrm{P}($ Orange $)=0.17 \mathrm{H}_{1}: \mathrm{P}($ Orange $)<0.17$	B1	or $\mathrm{H}_{0}: p=0.17 \mathrm{H}_{1}: p<0.17$
5(ii)	Wrongly concluding that \% age is less than 17%	B1	OE in context allow "fewer than 3 orange in packet even though average 17% is correct"
		1	
5(iii)	$\mathrm{B}(30,0.17)$ stated or implied	M1	eg by $0.17^{p} \times 0.83^{q}(p+q=30)$ or ${ }^{30} \mathrm{C}_{r}(r<30)$
	$\begin{aligned} & (1-0.17)^{30}+30(1-0.17)^{29} \times 0.17+{ }^{30} \mathrm{C}_{2}(1- \\ & 0.17)^{28} \times 0.17^{2} \end{aligned}$	M1	$\begin{aligned} & \text { correct, but allow }+{ }^{30} \mathrm{C}_{3}(1-0.17)^{27} \times \\ & 0.17^{3} \end{aligned}$
	$=0.0949$ (3 sf)	A1	(SR: use of $\mathrm{N}(5.1,4.233)$ M1 standardising (with or without cc) M1 $\max 2 / 3$)
		3	

Question	Answer	Marks	Guidance
5 (iv)	$\mathrm{P}(\geqslant 3$ orange $\mid p=0.05)$	M1	stated or attempted; can be implied
	$=1-\left[(0.95)^{30}+30(0.95)^{29} \times 0.05+{ }^{30} \mathrm{C}_{2}(0.95)^{28}\right.$ $\left.\times 0.05^{2}\right]$	$\mathbf{M 1}$	allow $+{ }^{30} \mathrm{C}_{3}(0.95)^{27} \times 0.05^{3}$ in bracket, or ans 0.0608
	$=0.188(3 \mathrm{sfs})$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(i)	$1-6 \int_{0.3}^{0.7}\left(x-x^{2}\right) \mathrm{d} x$	M1	or $2 \times 6 \int_{0}^{0.3}\left(x-x^{2}\right) \mathrm{d} x$ or similar correct expression before integration
	$1-\left[6\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right]_{0.3}^{0.7}$	A1	or similar correct expression after integration
	$1-6\left[\frac{0.7^{2}}{2}-\frac{0.7^{3}}{3}-\frac{0.3^{2}}{2}+\frac{0.3^{3}}{3}\right]$	M1	Attempt subst correct limits in this or other correct expression
	$=0.432($ or $54 / 125)$	A1	(SR1 Omission of ' $1-$ ' scores B2 for 0.568 or $71 / 125$) (SR2 Omission of ' 2 x ' scores B2 for 0.216 or $27 / 125$)
		4	
6(ii)	Correct shape between $x=0$ and 1	B1	No curve outside this range.
	$\mathrm{E}(\mathrm{X})=0.5$	B1	
		2	
6(iii)	$\begin{aligned} & 6 \int_{0}^{1}\left(x^{3}-x^{4}\right) \mathrm{d} x \\ & =\left[6\left(\frac{x^{4}}{4}-\frac{x^{5}}{5}\right)\right] \begin{array}{l} 1 \\ 0 \end{array} \end{aligned}$	M1	attempt int $x^{2} \mathrm{f}(x)$, ignore limits
	$6\left[\frac{1^{4}}{4}-\frac{1^{5}}{5}\right] \quad(=0.3)$	M1	attempt subst correct limits in correct integ
	$\begin{aligned} & \operatorname{Var}(X)={ }^{\prime} 0.3^{\prime}-{ }^{\prime} 0.5^{\prime 2} \\ & =0.05 \end{aligned}$	A1FT	FT their mean, dep their $\operatorname{Var}(X)>0$
		3	

Question	Answer	Marks	Guidance
7(i)	$\bar{x}=11.83$	B1	
	$11.83 \pm z \frac{0.1}{\sqrt{10}}$	M1	any z
	$z=2.576$	B1	accept 2.574 to 2.579
	[11.75 to 11.91]	A1	or equiv. Accept 11.7 to 11.9
		4	
7(ii)	No because pop normal (so \bar{X} normally distr)	B1	
		1	
7(iii)	11.7 not within CI	B1FT	
		1	
7(iv)	No because $95 \% \mathrm{CI}$ is narrower than 99% CI	B1	OE
		1	
7(v)	$\Sigma x^{2} \quad(=1399.67)$	M1	attempted
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{10}{9}\left(\frac{11399.67 "}{10}-\left(\frac{" 118.3}{10}\right)^{2}\right) \mathrm{OE}$	M1	correct sub of their Σs into correct formula
	$=0.0201(3 \mathrm{sf})$ or 181/9000	A1	
		3	

