9709/62

Cambridge International AS/A Level – Mark Scheme PUBLISHED

March 2018 9709_m18_ms_62

Question					Answ	er				Marks	Guidance
1	1000 800 600 400 200 0 5 10 15 TIME, IN MINUTES						10 TES		© 15	M1 A1	Attempt to plot cumulative frequencies at ucb and all points joined between $(3,y_1)$ and $(14,y_2)$. Cf table not required. Linear scales starting at (0,0) and axes labelled cf and time in mins, all points correct; (allow straight lines or curves) 450 seen in median attempt on increasing CF graph (independent);
	t	0	3	4	5	6	8	10	14		
	cf	0	120	300	500	660	770	850	900		
	Media	an valu	e: 4.8 (r	ninutes))					A1 FT	Correct (4.7 \leq m < 4.9) or FT from reading their increasing graph at cf = 450
										4	

Question	Answer	Marks	Guidance
2(i)	1 L: ${}^{6}C_{2} = 15$	B1	
		1	
2(ii)	No L: ${}^{6}C_{3} = 20$ (1 L: ${}^{6}C_{2} = 15$)	M1	Either 0L or 2L correct unsimplified
	2 L: ${}^{6}C_{1} = 6$	M1	Summing the 3 correct scenarios
	Total = 41	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	(10/160 =) 1/16, 0.0625	B1	OE
		1	
3(ii)	(90/160) = 9/16, 0.5625	B1	OE
		1	
3(iii)	P(red/hatchback) = P(red hatchback) / P(hatchback) = 40/160 / 90/160	M1	Appropriate probabilities in a fraction
	= 4/9	A1	OE Altn method: Direct from table M1 for 40/a or b/90, $a \neq 160$ A1 for 40/90 oe
		2	

Question	Answer	Marks	Guidance
3(iv)	<i>EITHER:</i> P(red) × P(hatchback) = $\frac{72}{160} \times \frac{90}{160} \neq \frac{40}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
	<i>OR</i> : P(red/hatchback) = 40/90 and $\frac{40}{90} \neq \frac{72}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
		2	

Question	Answer	Marks	Guidance
4(i)	$\Sigma p = 1: 0.2 + 0.1 + p + 0.1 + q = 1: p + q = 0.6$	M1	Unsimplified sum of probabilities equated to 1
	$\Sigma px = 1.7: -0.4 + 0 + p + 0.3 + 4q = 1.7:$	M1	Unsimplified Sum of <i>px</i> equated to 1.7
	p + 4q = 1.8	M1	Solve simult. equations to find expression in p or q
	p = 0.2, q = 0.4	A1	
		4	
4(ii)	$Var(X) = \Sigma p x^{2} - 1.7^{2} = 4x0.2 + 1p + 9x0.1 + 16q - 1.7^{2}$ = 8.3 - 2.89	M1	Use correct unsimplified expression for variance
	= 5.41	A1	
		2	

9709/62

	9709	m18	ms	62
--	------	-----	----	----

Question	Answer	Marks	Guidance
5(i)	24.25n - 20n = 136 Or 136	M1	Unsimplified correct equation
	$\frac{100}{n} + 20 = 24.25$		
	<i>n</i> = 32	A1	
		2	
5(ii)	Using coded information: Variance = $\frac{2888}{32} - \left(\frac{136}{32}\right)^2$	M1	unsimplified expression for variance
	= 72.1875 = 72.19	A1	accept answers 72.2 SOI
	Using uncoded information: Variance = $\frac{\sum x^2}{32} - 24.25^2$ Equate with 72.1875 to give	M1	Equate two expressions for variance and solve
	$\sum x^2 = 21128$	A1	
		4	

March 2018

9709	m18	ms	62

Question	Answer	Marks	Guidance
6(i)	$3! \times \frac{4!}{2} \times 2$	M1	3! oe seen multiplied by integer ≥ 1 , no addition
	3!	M1	4!/3! oe seen multiplied by integer > 1, no addition
	= 48	A1	
		3	
6(ii)	EITHER:	B1	7!/3! -
	$= 7!/3! - 3 \times \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3!} = (7!/3! - 6!/2!)$ = 840 - 360	B1	6!/2! OE
	= 480	B 1	
	<i>OR:</i> No of arrangements ending in 8: $\frac{6!}{3!}$	B1	No. ending in 8 or no. ending in 6 correct unsimplified
	No ending in 6: 6!/2!	B1	Both correct and added unsimplified
	Total: $\frac{6!}{3!} + 6!/2 = 120 + 360 = 480$	B1	
		3	

9709/62

Question	Answer	Marks	Guidance
7(i)	$P(X > 410) = 225/6000 = 0.0375$ $P\left(Z > \frac{410 - 400}{\sigma}\right) = 0.0375: 0.9625$	M1	Use 1 −225/6000 = 0.9625 to find <i>z</i> value
	$z \text{ value} = \pm 1.78$	A1	z value: ± 1.78
	$\frac{10}{\sigma} = 1.78$	M1	$(410-400)/\sigma = their z \text{ (must be a } z \text{ value)}$
	$\sigma = 5.62$	A1	
		4	
7(ii)	We need $P(Z < -1.5)$ and $P(Z > 1.5)$	M1	Attempt at $P(Z < -1.5)$ or $P(Z > 1.5)$ 1 - $\Phi(1.5)$ seen
	$\Phi(-1.5) + 1 - \Phi(1.5) = 2 - 2\Phi(1.5)$	M1	Or equivalent expression with values
	$=2-2 \times 0.9332 = 0.1336 \ (0.134)$	A1	Correct to 3sf
	Number expected = 500 × 0.1336 = 66.8: 66 or 67 packets	B1ft	0.1336 used or FT their 4sf probability times 500, (not 0.9625 or 0.0375) rounded or truncated
		4	

9709/62

March 2018

97	09	m18	ms	62
	_	_		

Question	Answer	Marks	Guidance
8(i)	$P(4) + P(5) = {}^{5}C_{4} \left(\frac{1}{4}\right)^{4} \left(\frac{3}{4}\right)^{1} + {}^{5}C_{5} \left(\frac{1}{4}\right)^{5} \left(\frac{3}{4}\right)^{0}$	M1	One binomial term, with $p < 1$, $n=5$, $p + q=1$
	= 0.014648 + 0.00097656	M1	Add 2 correct unsimplified binomial terms
	$= 0.0156 \text{ or } \frac{1}{64}$	A1	
		3	
8(ii)	$1 - P(0) > 0.995: 0.75^n < 0.005$	M1	Equation or inequality involving 0.75^n and 0.005 or 0.25^n and 0.995
	$n\log 0.75 < \log 0.005$ n > 18.4:	M1	Attempt to solve <i>their</i> exponential equation using logs, or trial and error May be implied by their answer
	<i>n</i> = 19	A1	
		3	
8(iii)	p = 0.25, n = 160: mean = 160 x 0.25 (= 40) variance = 160 x 0.25 x 0.75 (=30)	B1	Correct unsimplified mean and variance
	$P(X < 50) = P\left(Z < \frac{49.5 - 40}{2}\right)$	M1	Use standardisation formulae must include square root.
	$(\sqrt{30})$	M1	Use continuity correction ± 0.5 (49.5 or 50.5)
	= P(Z < 1.734) = 0.959	A1	Correct final answer
		4	