

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$1 \mathrm{~L}:{ }^{6} \mathrm{C}_{2}=15$	$\mathbf{B 1}$	
		$\mathbf{1}$	
$2(\mathrm{ii})$	$\mathrm{No} \mathrm{L:}{ }^{6} \mathrm{C}_{3}=20$ $\left(1 \mathrm{~L}:{ }^{6} \mathrm{C}_{2}=15\right)$	$\mathbf{M 1}$	Either 0L or 2L correct unsimplified
	$2 \mathrm{~L}:{ }^{6} \mathrm{C}_{1}=6$	$\mathbf{M 1}$	Summing the 3 correct scenarios
	Total $=41$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3(i)	$(10 / 160=) 1 / 16,0.0625$	B1	OE
		1	
3(ii)	$(90 / 160)=9 / 16,0.5625$	B1	OE
		1	
3(iii)	$\begin{aligned} \mathrm{P}(\text { red } / \text { hatchback }) & =\mathrm{P}(\text { red hatchback }) / \mathrm{P}(\text { hatchback }) \\ & =40 / 160 / 90 / 160 \end{aligned}$	M1	Appropriate probabilities in a fraction
	$=4 / 9$	A1	OE Altn method: Direct from table M1 for 40/a or $\mathrm{b} / 90, \mathrm{a} \neq 160$ Al for 40/90 oe
		2	

Question	Answer	Marks	Guidance
3(iv)	EITHER: $\mathrm{P}(\text { red }) \times \mathrm{P}(\text { hatchback })=\frac{72}{160} \times \frac{90}{160} \neq \frac{40}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
	OR: $\mathrm{P}(\mathrm{red} / \text { hatchback })=40 / 90 \text { and } \frac{40}{90} \neq \frac{72}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
		2	

Question	Answer	Marks	Guidance
4(i)	$\Sigma p=1: 0.2+0.1+p+0.1+q=1: \quad p+q=0.6$	M1	Unsimplified sum of probabilities equated to 1
	$\Sigma p x=1.7:-0.4+0+p+0.3+4 q=1.7:$	M1	Unsimplified Sum of $p x$ equated to 1.7
	$p+4 q=1.8$	M1	Solve simult. equations to find expression in p or q
	$p=0.2, q=0.4$	A1	
		4	
4(ii)	$\begin{aligned} & \operatorname{Var}(X)=\Sigma p x^{2}-1.7^{2}=4 \mathrm{x} 0.2+1 p+9 \mathrm{x} 0.1+16 q-1.7^{2} \\ & =8.3-2.89 \end{aligned}$	M1	Use correct unsimplified expression for variance
	$=5.41$	A1	
		2	

Question	Answer	Marks	Guidance
5(i)	$24.25 n-20 n=136$ Or $\frac{136}{n}+20=24.25$	M1	Unsimplified correct equation
	$n=32$	A1	
		2	
5(ii)	Using coded information: $\text { Variance }=\frac{2888}{32}-\left(\frac{136}{32}\right)^{2}$	M1	unsimplified expression for variance
	$=72.1875=72.19$	A1	accept answers 72.2 SOI
	Using uncoded information: $\text { Variance }=\frac{\sum x^{2}}{32}-24.25^{2}$ Equate with 72.1875 to give	M1	Equate two expressions for variance and solve
	$\sum x^{2}=21128$	A1	
		4	

Question	Answer	Marks	Guidance
6 (i)	$3!\times \frac{4!}{3!} \times 2$	M1	3 ! oe seen multiplied by integer $\geqslant 1$, no addition
		M1	$4!/ 3$! oe seen multiplied by integer >1, no addition
	$=48$	A1	
		3	
6(ii)	EITHER:$\begin{aligned} \text { Even } & =\text { Total number of arrangements }- \text { Odd numbers } \\ & =7!/ 3!-3 \times \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3!}=(7!/ 3!-6!/ 2!) \\ & =840-360 \end{aligned}$	B1	7!/3! -
		B1	6!/2! OE
	$=480$	B1	
	OR: No of arrangements ending in $8: \frac{6!}{3!}$	B1	No. ending in 8 or no. ending in 6 correct unsimplified
	No ending in 6: $6!/ 2$!	B1	Both correct and added unsimplified
	Total: $\frac{6!}{3!}+6!/ 2=120+360=480$	B1	
		3	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & \mathrm{P}(X>410)=225 / 6000=0.0375 \\ & \mathrm{P}\left(Z>\frac{410-400}{\sigma}\right)=0.0375: 0.9625 \end{aligned}$	M1	Use $1-225 / 6000=0.9625$ to find z value
	z value $= \pm 1.78$	A1	z value: ± 1.78
	$\frac{10}{\sigma}=1.78$	M1	(410-400)/ $\sigma=$ their z (must be a z value)
	$\sigma=5.62$	A1	
		4	
7(ii)	We need $\mathrm{P}(Z<-1.5)$ and $\mathrm{P}(Z>1.5)$	M1	Attempt at $\mathrm{P}(Z<-1.5)$ or $\mathrm{P}(Z>1.5)$ $1-\Phi(1.5)$ seen
	$\begin{aligned} & \Phi(-1.5)+1-\Phi(1.5) \\ & =2-2 \Phi(1.5) \end{aligned}$	M1	Or equivalent expression with values
	$=2-2 \times 0.9332=0.1336(0.134)$	A1	Correct to 3sf
	$\begin{aligned} & \text { Number expected }=500 \times 0.1336 \\ & =66.8 \text { : } \\ & 66 \text { or } 67 \text { packets } \end{aligned}$	B1ft	0.1336 used or FT their 4 sf probability times 500 , (not 0.9625 or 0.0375) rounded or truncated
		4	

Question	Answer	Marks	Guidance
8(i)	$\mathrm{P}(4)+\mathrm{P}(5)={ }^{5} \mathrm{C}_{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{1}+{ }^{5} \mathrm{C}_{5}\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{0}$	M1	One binomial term, with $p<1, n=5, p+q=1$
	$=0.014648 . .+0.00097656 .$.	M1	Add 2 correct unsimplified binomial terms
	$=0.0156 \text { or } \frac{1}{64}$	A1	
		3	
8(ii)	$1-\mathrm{P}(0)>0.995: 0.75^{n}<0.005$	M1	Equation or inequality involving 0.75^{n} and 0.005 or 0.25^{n} and 0.995
	$\begin{aligned} & n \log 0.75<\log 0.005 \\ & n>18.4: \end{aligned}$	M1	Attempt to solve their exponential equation using logs, or trial and error May be implied by their answer
	$n=19$	A1	
		3	
8(iii)	$\begin{aligned} p=0.25, n=160: & \text { mean }=160 \times 0.25(=40) \\ & \text { variance }=160 \times 0.25 \times 0.75(=30) \end{aligned}$	B1	Correct unsimplified mean and variance
	$\mathrm{P}(X<50)=\mathrm{P}\left(Z<\frac{49.5-40}{\sqrt{30}}\right)$	M1	Use standardisation formulae must include square root.
	$\sqrt{30}$	M1	Use continuity correction ± 0.5 (49.5 or 50.5)
	$=\mathrm{P}(\mathrm{Z}<1.734)=0.959$	A1	Correct final answer
		4	

