Cambridge International A Level – Mark Scheme PUBLISHED

March 2018

9709 m18 ms 52

Question	Answer	Marks	Guidance
1	$d = \sqrt{(0.2^2 + 0.2^2)} (= 0.2828)$ OR $AC = \sqrt{(0.4^2 + 0.4^2)} (= 0.56568)$	B1	Note $d = \frac{1}{2}AC$
	$\tan 30 = 0.2828 / (h / 2)$	M1	
	h = 0.98(0)	A1	$2\sqrt{6}/5$
		3	

Question	Answer	Marks	Guidance
2	$u = 15\cos 35 (= 12.287)$	B1	Use horizontal motion
	$v = 15\sin 35 - 2g(=-11.396)$	B1	Use vertical motion
	$V = \sqrt{(12.287^2 + 11.396^2)}$ OR $\tan\theta = \pm 11.396 / 12.287$	M1	
	$V = 16.8 \text{ m s}^{-1}$	A1	
	$\theta = 42.8^{\circ}$ below the horizontal	A1	
		5	

Question	Answer	Marks	Guidance
3(i)	mg = 12(0.7 - 0.4) / 0.4	M1	Use $T = \lambda x / L$
	m = 0.9 kg AG	A1	
		2	

9709/52

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(ii)	$EPE = \frac{12(0.7 - 0.4)^2}{(2 \times 0.4)}$	B1	Correct EPE term
	$0.9v^2/2 = 0.9g(0.7 - 0.4) + 0.9 \times 1^2/2 - 12(0.7 - 0.4)^2/(2 \times 0.4)$	M1	Attempts a 4 term energy equation
		A1	Correct equation
	$v = 2 \text{ m s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$(\tan\theta = 3) \theta = 71.6^{\circ}$	B1	Use the formula sheet for the trajectory equation
	$0.05 = g / (2V^2 cos^2 71.6)$	M1	
	$V = 10\sqrt{10} = 31.6 \text{ m s}^{-1}$	A1	
		3	
4(ii)	$x = 3x - 0.05x^2$	M1	Use $y = x$
	x = 40 and $y = 40$	A1	
		2	

9709/52

Cambridge International A Level – Mark Scheme PUBLISHED

March 2018

9709) m1	8 ms	52

Question	Answer	Marks	Guidance
4(iii)	dy / dx = 3 - 0.1x = 0	M1	Use the fact that the gradient is zero at the highest point
	$x = 30, y = (3 \times 30 - 0.05 \times 30^2) = 45$	A1	
	$30 = (31.6\cos 71.6)t$	M1	Use horizontal motion
	t = 3.01	A1	t = 3 if exact arithmetic used
		4	

Question	Answer	Marks	Guidance
5(i)	$EITHER:$ $R\cos 60 = 0.3g$	(M1	Resolve vertically
	R = 6 N	A1	
	$6\cos 30 = 0.3\omega^2 \times 0.4\cos 30$	M1	Use Newton's Second Law horizontally
	$\omega = 5\sqrt{2} = 7.07 \text{ rad } s^{-1}$	A1)	
	$OR: 0.3g\cos 30 = 0.3 \times (0.4\cos 30)\omega^2 \cos 60$	(M1	Resolve along the tangent
		A1	Correct equation
	$\omega = 5\sqrt{2} = 7.07 \text{ rad } s^{-1}$	M1	Attempt to solve for ω
		A1)	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(ii)	$R\cos 60 = 0.3g + 5\sin 30$	M1	Resolve vertically
	R = 11 N	A1	
	$11\cos 30 + 5\cos 30 = 0.3v^2 / (0.4\cos 30)$	M1	Resolve horizontally
	$v = 4 \text{ m s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
6(i)	$R = 0.2g + 0.4t\sin\theta (= 2 + 0.24t)$ F = 0.5(2 + 0.24t) = 1 + 0.12t	M1	Note $\sin\theta = 0.6$ and $\cos\theta = 0.8$ ($\theta = 36.87^{\circ}$) Resolve vertically and use $F = \mu R$
	$0.4t\cos\theta = 1 + 0.12t$	M1	Resolve horizontally
	t = 5	A1	
		3	
6(ii)	$0.2 dv/dt = 0.4t \times 0.8 - (1 + 0.12t)$	M1	Use Newton's Second Law horizontally
	dv / dt = t - 5 AG	A1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

March 2018

Question	Answer	Marks	Guidance
6(iii)	$\int dv = \int (t-5) dt$ $v = t^2 / 2 - 5t + c$	M1	Attempt to integrate the equation from part(ii)
	v = 0 when $t = 5$ hence $c = 12.5$	A1	Finds the constant of integration, <i>c</i>
	$v = 8^2 / 2 - 5 \times 8 + 12.5 = 4.5$	A1	Find <i>v</i> when $t = 8$
	$a = -0.5 \times 0.2g / 0.2 = -5 \text{ m s}^{-1} \text{ and } s = 4.5^2 / (2 \times 5)$	M1	Finds <i>a</i> and uses $v^2 = u^2 + 2as$
	s = 2.025 m	A1	
		5	

Question	Answer	N	Marks	Guidance
7(i)	$\tan 48 = \overline{x} / 0.3$		M1	\overline{x} is the distance of the centre of mass from AD
	$\overline{x} = 0.3332$		A1	
	$0.6^{2} \times 0.3 = \pi r^{2} \times 0.25 + (0.6^{2} - \pi r^{2}) \overline{x} \text{ OR} 0.6^{2} \times 0.3 = \pi r^{2} \times 0.35 + (0.6^{2} - \pi r^{2}) \times (0.6 - \overline{x})$		M1	Take moments about ADTake moments about BC
	$\pi r^{2} \times (0.3332 - 0.25) = 0.6^{2} \times (0.3332 - 0.3) \text{ OR}$ $\pi r^{2} (0.6 - 0.3332 - 0.35) = 0.6^{2} (0.6 - 0.3332 - 0.3)$		A1	
	r = 0.214	G	A1	
			5	

9709/52

Cambridge International A Level – Mark Scheme PUBLISHED

March 2018 9709 m18 ms 52

		9709_01	
Question	Answer	Marks	Guidance
7(ii)	$0.3W = 0.6 \times 15\cos 60$	M1	Take moments about $C.(W = $ weight of the lamina)
	W = 15	A1	
	Square = $15 \times 0.6^2 / (0.6^2 - \pi \times 0.214^2)$	M1	Recognise that the ratio of weights = ratio of areas
	Square = 25(.0) N	A1	
		4	