Question	Answer	Marks	
1	$d=\sqrt{\left.\left(0.2^{2}+0.2^{2}\right)(=0.2828) \text { OR } A C=\sqrt{(} 0.4^{2}+0.4^{2}\right)(=0.56568 . .)}$	B1	Note $d=\frac{1}{2} A C$
	$\tan 30=0.2828 /(h / 2)$	M1	
	$h=0.98(0)$	$\mathbf{A 1}$	$2 \sqrt{6} / 5$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	$u=15 \cos 35(=12.287)$	B1	Use horizontal motion
	$v=15 \sin 35-2 g(=-11.396)$	B1	Use vertical motion
	$\left.V=\sqrt{(} 12.287^{2}+11.396^{2}\right)$ OR $\tan \theta= \pm 11.396 / 12.287$	M1	
	$V=16.8 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	$\theta=42.8^{\circ}$ below the horizontal	A1	
		$\mathbf{5}$	

Question	Answer	Marks	
$3(\mathrm{i})$	$m g=12(0.7-0.4) / 0.4$	M1	Use $T=\lambda x / L$
	$m=0.9 \mathrm{~kg}$	AG	A1
		$\mathbf{2}$	

Question	Answer	Marks	
$3(\mathrm{ii})$	$\mathrm{EPE}=12(0.7-0.4)^{2} /(2 \times 0.4)$	$\mathbf{B 1}$	Correct EPE term
	$0.9 v^{2} / 2=0.9 g(0.7-0.4)+0.9 \times 1^{2} / 2-12(0.7-0.4)^{2} /(2 \times 0.4)$	M1	Attempts a 4 term energy equation
		$\mathbf{A 1}$	Correct equation
	$v=2 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
4(i)	$(\tan \theta=3) \theta=71.6^{\circ}$	B1	Use the formula sheet for the trajectory equation
	$0.05=g /\left(2 V^{2} \cos ^{2} 71.6\right)$	M1	
	$V=10 \sqrt{10}=31.6 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		3	
4(ii)	$x=3 x-0.05 x^{2}$	M1	Use $\mathrm{y}=x$
	$x=40$ and $\mathrm{y}=40$	A1	
		2	

Question	Answer	Marks	
4 (iii)	$\mathrm{d} y / \mathrm{dx}=3-0.1 x=0$	M1	Use the fact that the gradient is zero at the highest point
	$x=30, y=\left(3 \times 30-0.05 \times 30^{2}\right)=45$	$\mathbf{A 1}$	
	$30=(31.6 \cos 71.6) t$	$\mathbf{M 1}$	Use horizontal motion
	$t=3.01$	$\mathbf{A 1}$	$t=3$ if exact arithmetic used
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
5(i)	EITHER: $R \cos 60=0.3 g$	(M1	Resolve vertically
	$R=6 \mathrm{~N}$	A1	
	$6 \cos 30=0.3 \omega^{2} \times 0.4 \cos 30$	M1	Use Newton's Second Law horizontally
	$\omega=5 \sqrt{2}=7.07 \mathrm{rad} s^{-1}$	A1)	
	OR: $0.3 g \cos 30=0.3 \times(0.4 \cos 30) \omega^{2} \cos 60$	(M1	Resolve along the tangent
		A1	Correct equation
	$\omega=5 \sqrt{2}=7.07 \mathrm{rad} s^{-1}$	M1	Attempt to solve for ω
		A1)	
		4	

Question	Answer	Marks	
$5(\mathrm{ii})$	$R \cos 60=0.3 g+5 \sin 30$	M1	Resolve vertically
	$R=11 \mathrm{~N}$	A1	
	$11 \cos 30+5 \cos 30=0.3 v^{2} /(0.4 \cos 30)$	$\mathbf{M 1}$	Resolve horizontally
	$v=4 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer		Marks	Guidance
6 (i)	$\begin{aligned} & R=0.2 \mathrm{~g}+0.4 \mathrm{tsin} \theta(=2+0.24 t) \\ & F=0.5(2+0.24 t)=1+0.12 t \end{aligned}$		M1	Note $\sin \theta=0.6$ and $\cos \theta=0.8\left(\theta=36.87^{\circ}\right)$ Resolve vertically and use $F=\mu R$
	$0.4 \mathrm{t} \cos \theta=1+0.12 t$		M1	Resolve horizontally
	$t=5$		A1	
			3	
6(ii)	$0.2 \mathrm{~d} v / \mathrm{d} t=0.4 t \times 0.8-(1+0.12 t)$		M1	Use Newton's Second Law horizontally
	$\mathrm{d} v / \mathrm{d} t=t-5$	AG	A1	
			2	

Question	Answer	Marks	Guidance
6 (iii)	$\int \mathrm{d} v=\int(t-5) \mathrm{d} t$ $v=t^{2} / 2-5 t+c$	M1	Attempt to integrate the equation from part(ii)
	$v=0$ when $t=5$ hence $c=12.5$	A1	Finds the constant of integration, c
	$v=8^{2} / 2-5 \times 8+12.5=4.5$	A1	Find v when $t=8$
	$a=-0.5 \times 0.2 g / 0.2=-5 \mathrm{~m} \mathrm{~s}^{-1}$ and $s=4.5^{2} /(2 \times 5)$	M1	Finds a and uses $v^{2}=u^{2}+2 a s$
	$s=2.025 \mathrm{~m}$	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
7(i)	$\tan 48=\bar{x} / 0.3$	M1	\bar{x} is the distance of the centre of mass from $A D$
	$\bar{x}=0.3332$	A1	
	$\begin{aligned} & 0.6^{2} \times 0.3=\pi r^{2} \times 0.25+\left(0.6^{2}-\pi r^{2}\right) \bar{x} \text { OR } \\ & 0.6^{2} \times 0.3=\pi r^{2} \times 0.35+\left(0.6^{2}-\pi r^{2}\right) \times(0.6-\bar{x}) \end{aligned}$	M1	Take moments about $A D$ Take moments about $B C$
	$\begin{aligned} & \pi r^{2} \times(0.3332-0.25)=0.6^{2} \times(0.3332-0.3) \text { OR } \\ & \pi r^{2}(0.6-0.3332-0.35)=0.6^{2}(0.6-0.3332-0.3) \end{aligned}$	A1	
	$r=0.214$ AG	A1	
		5	

Question	Answer	Marks	
$7($ ii $)$	$0.3 W=0.6 \times 15 \cos 60$	M1	Take moments about C.($W=$ weight of the lamina)
	$W=15$	A1	
	Square $=15 \times 0.6^{2} /\left(0.6^{2}-\pi \times 0.214^{2}\right)$	$\mathbf{M 1}$	Recognise that the ratio of weights $=$ ratio of areas
	Square $=25(.0) \mathrm{N}$	A1	
		$\mathbf{4}$	

