Question	Answer	Marks	Guidance
1	$[T-2=0.2 a \quad 8-T=0.8 a]$ System is $0.8 g-0.2 g=(0.2+0.8) a$ and $T=2(0.2)(0.8) g /(0.8+0.2)$	M1	Attempt Newton's 2nd law for either particle or use a formula for the system for a and/or T
	A1	Two correct equations	
	Attempt to solve for a or T	M1	
	$a=6 T=3.2$	$\mathbf{A 1}$	Both correct NB $a=6 \mathbf{A G}$
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2	EITHER: $2 P \sin \theta=P \sin 60$	(M1	Resolve vertically (2 terms)
	$\theta=25.7$	A1	
	$2 P \cos \theta+P \cos 60=10$	M1	Resolve horizontally (3 terms)
	$P=4.34$	A1)	
	OR1: $\left[\frac{2 P}{\sin 120}=\frac{P}{\sin (180-\theta)}=\frac{10}{\sin (60+\theta)}\right]$	(M1	Attempt Lami's theorem using one pair of terms
	$\theta=25.7$	A1	Solve for θ
	Use a second Lami equation	M1	
	$P=4.34$	A1)	
	OR2: Use sine or cosine rule with triangle of forces using forces $P, 2 P$ and 10 and with angles 60 , θ and $120-\theta$ between	(M1	
	$\theta=25.7$	A1	
	Use a second relationship from the triangle of forces	M1	
	$P=4.34$	A1)	
		4	

Question	Answer	Marks	Guidance
3(i)	$\frac{1}{2} \times 40 \times v^{2}=40 \times g \times 7.2$	M1	Use of KE gain $=$ PE loss
	$v=12 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	
3(ii)	Work done against friction(WDF) $\mathrm{WDF}=40 \times g \times 7.2-\frac{1}{2} \times 40 \times 10^{2}[=880]$	M1	May be calculated as $\frac{1}{2} \times 40 \times 12^{2}-\frac{1}{2} \times 40 \times 10^{2}$
	$\frac{1}{2} \times 40 \times V^{2}+40 \times g \times 7.2=\frac{1}{2} \times 40 \times 11^{2}+880$ or $\frac{1}{2} \times 40 \times V^{2}=\frac{1}{2} \times 40 \times 11^{2}-\frac{1}{2} \times 40 \times 10^{2}$	M1	For 4-term work-energy equation with numerical attempt at work done or using the fact that WDF is the same in both cases, extra initial $\mathrm{KE}=$ difference in final KEs
	$V=\sqrt{21}=4.58$	A1	
		3	

Question	Answer	Marks	Guidance
4	$\begin{aligned} & {[R=12 g \cos 25+P \sin 25} \\ & P \cos 25=F+12 g \sin 25] \\ & \text { or } \\ & {[P=F \cos 25+R \sin 25} \\ & R \cos 25=F \sin 25+12 g] \end{aligned}$	M1	Attempt resolving of forces in any one direction, parallel to, perpendicular to plane or horizontally, vertically
		A1	Any one correct equation
		A1	Any second correct equation
	$F=0.8 R$	M1	Use of $F=\mu R$
	Complete method to find P from 2 equations(3 terms each)	M1	
	$P=242$	A1	
		6	

Question	Answer	Marks	Guidance
5(i)	$200=1 / 2 \times(0+v) \times 10$	M1	Use of suvat
	$v=40 \mathrm{~m} \mathrm{~s}^{-1}$	A1	AG
	$200=1 / 2 \times a \times 10^{2}$	M1	Second use of suvat
	$a=4 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
		4	
5(ii)	$0=40^{2}-2 \times g \times s$	M1	Use of suvat with $a=g$
	$s=80$ so height above ground $=280 \mathrm{~m}$	A1	
		2	
5(iii)	$\begin{aligned} & \text { EITHER: } \\ & 0=40-g t_{1} \end{aligned}$	(M1	Use of suvat to find extra time to highest point
	$t_{1}=4$	A1	
	$280=1 / 2 g t_{2}{ }^{2}$	M1	Use of suvat to find time from highest point to ground
	$t_{2}=\sqrt{ } 56=7.48 \ldots$ so total time $=21.5 \mathrm{~s}$	A1)	
	$\begin{aligned} & \text { OR: } \\ & -200=40 t_{3}-1 / 2 g t_{3}{ }^{2} \end{aligned}$	(M1	Use of $s=u t+1 / 2 a t^{2}$ with 200, 40 and g used
	$\begin{aligned} & 5 t_{3}{ }^{2}-40 t_{3}-200=0 \text { o.e. } \\ & {\left[t_{3}{ }^{2}-8 t_{3}-40=0\right]} \end{aligned}$	A1	Correct quadratic for time under gravity
	$\left[t_{3}=4 \pm \sqrt{ } 56=4 \pm 7.48\right]$	M1	Solution of relevant 3-term quadratic
	$t_{3}=11.48$ so total time is 21.5 s	A1)	
		4	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	Driving force $=35 \times 60$	M1	
	Power $=35 \times 60^{2}=126000 \mathrm{~W}$	A1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(ii)	Driving force is $\mathrm{DF}=\frac{126000}{30}$	B1FT	
	DF-35 $\times 30=1200 a$	M1	For 3-term Newton's 2nd law equation, dimensionally correct
	$a=\frac{3150}{1200}=\frac{21}{8}=2.625 \mathrm{~m} \mathrm{~s}^{-2}$	A1	AG
		3	
6(iii)	$\mathrm{DF}=\frac{126000}{v}$	M1	For $F=\frac{P}{v}$
	$\frac{126000}{v}=35 v+1200 g \times \frac{7}{48}$	M1	For 3-term force equation, or equivalent
		A1	For correct (unsimplified) equation
	$\begin{aligned} & 35 v^{2}+1750 v-126000=0 \\ & \text { or } v^{2}+50 v-3600=0 \end{aligned}$	M1	For simplifying and solving of a 3term quadratic attempted
	$v=40 \mathrm{~ms}^{-1}$	A1	$v=-90$ rejected or ignored
		5	

Question	Answer	Marks	Guidance
7(i)	$0.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	B1	
		1	
7(ii)	$a=-1600 t^{-3}$	M1	For attempted differentiation of $-2+\frac{800}{t^{2}}$
	Acceleration at $t=20$ is $-0.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	A1	
		2	
7(iii)	Straight line joining $t=0, v=4 \text { to } t=10, v=6$	B1	
	Curve with correct concavity joining end of line to $t=20, v=0$	B1	
	Correct labelling on axes provided the curves pass through (0,4), (10,6), (20,0)	B1	
		3	

Question	Answer	Marks	Guidance
7 7(iv)	Trapezium area $=50$	$\mathbf{B 1}$	or from integration of $4+0.2 t$
	$5\left(-2+800 t^{-2}\right) \mathrm{d} t=-2 t-800 t^{-1}$	$\mathbf{M 1}$	Integration attempted
	$\left[-2 t-800 t^{-1}\right]_{10}^{20}$ $=-40-40+20+80$	$\mathbf{M 1}$	Correct indefinite integral
	Distance is $50+20=70 \mathrm{~m}$	Correct use of the limits $t=10$ and $t=20$	
		$\mathbf{A 1}$	Correct total

