Question	Answer	Marks	Guidance
1	[T-2=0.2a 8-T=0.8a] System is $0.8g - 0.2g = (0.2 + 0.8)a$ and $T = 2(0.2)(0.8)g/(0.8 + 0.2)$	M1	Attempt Newton's 2nd law for either particle or use a formula for the system for a and/or T
		A1	Two correct equations
	Attempt to solve for <i>a</i> or <i>T</i>	M1	
	a = 6 T = 3.2	A1	Both correct NB $a = 6$ AG
		4	

Question	Answer	Marks	Guidance
2	$EITHER: 2P \sin \theta = P \sin 60$	(M1	Resolve vertically (2 terms)
	$\theta = 25.7$	A1	
	$2P\cos\theta + P\cos60 = 10$	M1	Resolve horizontally (3 terms)
	<i>P</i> = 4.34	A1)	
	$OR1: \\ \left[\frac{2P}{\sin 120} = \frac{P}{\sin(180 - \theta)} = \frac{10}{\sin(60 + \theta)}\right]$	(M1	Attempt Lami's theorem using one pair of terms
	$\theta = 25.7$	A1	Solve for θ
	Use a second Lami equation	M1	
	<i>P</i> = 4.34	A1)	
	<i>OR2:</i> Use sine or cosine rule with triangle of forces using forces <i>P</i> , 2 <i>P</i> and 10 and with angles 60, θ and 120 – θ between	(M1	
	$\theta = 25.7$	A1	
	Use a second relationship from the triangle of forces	M1	
	<i>P</i> = 4.34	A1)	
		4	

Question	Answer	Marks	Guidance
3(i)	$\frac{1}{2} \times 40 \times v^2 = 40 \times g \times 7.2$	M1	Use of KE gain = PE loss
	$v = 12 \text{ m s}^{-1}$	A1	
		2	
3(ii)	Work done against friction(WDF) WDF = $40 \times g \times 7.2 - \frac{1}{2} \times 40 \times 10^2 [= 880]$	M1	May be calculated as $\frac{1}{2} \times 40 \times 12^2 - \frac{1}{2} \times 40 \times 10^2$
	$\frac{1}{2} \times 40 \times V^{2} + 40 \times g \times 7.2 = \frac{1}{2} \times 40 \times 11^{2} + 880$ or $\frac{1}{2} \times 40 \times V^{2} = \frac{1}{2} \times 40 \times 11^{2} - \frac{1}{2} \times 40 \times 10^{2}$	M1	For 4-term work-energy equation with numerical attempt at work done or using the fact that WDF is the same in both cases, extra initial KE = difference in final KEs
	$V = \sqrt{21} = 4.58$	A1	
		3	

Question	Answer	Marks	Guidance
4	$[R = 12g \cos 25 + P \sin 25]$ $P \cos 25 = F + 12g \sin 25]$ or $[P = F \cos 25 + R \sin 25]$ $R \cos 25 = F \sin 25 + 12g]$	M1	Attempt resolving of forces in any one direction, parallel to, perpendicular to plane or horizontally, vertically
		A1	Any one correct equation
		A1	Any second correct equation
	F = 0.8R	M1	Use of $F = \mu R$
	Complete method to find <i>P</i> from 2 equations(3 terms each)	M1	
	<i>P</i> = 242	A1	
		6	

Question	Answer	Marks	Guidance
5(i)	$200 = \frac{1}{2} \times (0 + v) \times 10$	M1	Use of <i>suvat</i>
	$v = 40 \text{ m s}^{-1}$	A1	AG
	$200 = \frac{1}{2} \times a \times 10^2$	M1	Second use of <i>suvat</i>
	$a = 4 \mathrm{m s}^{-2}$	A1	
		4	
5(ii)	$0 = 40^2 - 2 \times g \times s$	M1	Use of <i>suvat</i> with $a = g$
	s = 80 so height above ground = 280 m	A1	
		2	
5(iii)	$EITHER: 0 = 40 - gt_1$	(M1	Use of <i>suvat</i> to find extra time to highest point
	$t_1 = 4$	A1	
	$280 = \frac{1}{2}gt_2^2$	M1	Use of <i>suvat</i> to find time from highest point to ground
	$t_2 = \sqrt{56} = 7.48$ so total time = 21.5 s	A1)	
	$OR: -200 = 40t_3 - \frac{1}{2}gt_3^2$	(M1	Use of $s = ut + \frac{1}{2}at^2$ with 200, 40 and g used
	$5t_3^2 - 40t_3 - 200 = 0 \text{ o.e.}$ [$t_3^2 - 8t_3 - 40 = 0$]	A1	Correct quadratic for time under gravity
	$[t_3 = 4 \pm \sqrt{56} = 4 \pm 7.48]$	M1	Solution of relevant 3-term quadratic
	$t_3 = 11.48$ so total time is 21.5 s	A1)	
		4	

Question	Answer	Marks	Guidance
6(i)	Driving force = 35×60	M1	
	Power = $35 \times 60^2 = 126000$ W	A1	
		2	

9709/42

Question	Answer	Marks	Guidance
6(ii)	Driving force is $DF = \frac{126000}{30}$	B1FT	
	$DF - 35 \times 30 = 1200a$	M1	For 3-term Newton's 2nd law equation, dimensionally correct
	$a = \frac{3150}{1200} = \frac{21}{8} = 2.625 \text{ m s}^{-2}$	A1	AG
		3	
6(iii)	$\mathrm{DF} = \frac{126000}{v}$	M1	For $F = \frac{P}{v}$
	$\frac{126000}{v} = 35v + 1200g \times \frac{7}{48}$	M1	For 3-term force equation, or equivalent
		A1	For correct (unsimplified) equation
	$35v^{2} + 1750v - 126000 = 0$ or $v^{2} + 50v - 3600 = 0$	M1	For simplifying and solving of a 3- term quadratic attempted
	$v = 40 \text{ ms}^{-1}$	A1	v = -90 rejected or ignored
		5	

Question	Answer	Marks	Guidance
7(i)	$0.2 (m s^{-2})$	B1	
		1	
7(ii)	$a = -1600t^{-3}$	M1	For attempted differentiation of $-2 + \frac{800}{t^2}$
	Acceleration at $t = 20$ is -0.2 (m s ⁻²)	A1	
		2	
7(iii)	Straight line joining t = 0, v = 4 to $t = 10, v = 6$	B1	
	Curve with correct concavity joining end of line to $t = 20$, $v = 0$	B1	
	Correct labelling on axes provided the curves pass through (0,4), (10,6), (20,0)	B1	
		3	

Question	Answer	Marks	Guidance
7(iv)	Trapezium area = 50	B1	or from integration of $4 + 0.2t$
	$\int \left(-2 + 800t^{-2}\right) dt = -2t - 800t^{-1}$	M1	Integration attempted
		A1	Correct indefinite integral
	$\begin{bmatrix} -2t - 800t^{-1} \end{bmatrix}_{10}^{20}$ = -40 - 40 + 20 + 80	M1	Correct use of the limits $t = 10$ and $t = 20$
	Distance is $50 + 20 = 70$ m	A1	Correct total
		5	