Question	Answer	Marks
1	State or imply ordinates $1,0.8556 \ldots, 0.6501 \ldots, 0$	B1
	Use correct formula, or equivalent, with $h=\frac{1}{12} \pi$ and four ordinates	M1
	Obtain answer 0.525	A1
		$\mathbf{3}$

Question	Answer	Marks
2	State a correct unsimplified version of the x or x^{2} or x^{3} term	M1
	State correct first two terms $1-x$	A1
	Obtain the next two terms $-\frac{3}{2} x^{2}-\frac{7}{2} x^{3}$	A1 $+\mathbf{A 1}$
		$\mathbf{4}$

Question	Answer	Marks
$3(\mathrm{i})$	State correct expansion of $\cos (3 x+x)$ or $\cos (3 x-x)$	B1
	Substitute in $\frac{1}{2}(\cos 4 x+\cos 2 x)$	M1
	Obtain the given identity correctly AG	A1
		3(ii)
	Obtain integral $\frac{1}{8} \sin 4 x+\frac{1}{4} \sin 2 x$	B1
	Substitute limits correctly	M1
	Obtain the given answer following full, correct and exact working AG	A1
		$\mathbf{3}$

Question	Answer	Marks
$4(\mathrm{i})$	State or imply $n \ln y=\ln A+3 \ln x$	B1
	State that the graph of $\ln y$ against $\ln x$ has an equation which is linear in $\ln y$ and \ln x, or has equation of the form $n Y=\ln A+3 X$, where $Y=\ln y$ and $X=\ln x$, and is thus a straight line.	B1
		4(ii)
	Substitute x - and y-values in $n \ln y=\ln ~$ for one of the constants	$\mathbf{2}$
	Obtain a correct constant, e.g. $n=1.70$	M1
	Solve for a second constant	A1
	Obtain the other constant, e.g. $A=2.90$	A1 equation and solve
		$\mathbf{4}$

Question	Answer		Marks
5(i)	State correct derivative of x or y with respect to t		B1
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$		M1
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 \sin 2 t}{2+2 \cos 2 t}$, or equivalent		A1
	Use double angle formulae throughout		M1
	Obtain the given answer correctly	AG	A1
			5
5(ii)	State or imply $t=\tan ^{-1}\left(-\frac{1}{4}\right)$		B1
	Obtain answer $x=-0.961$		B1
			2

Question	Answer	Marks
6(i)	Show sufficient working to justify the given statement AG	B1
		1
6(ii)	Separate variables correctly and attempt integration of at least one side	B1
	$\text { Obtain term } \frac{1}{2} x^{2}$	B1
	Obtain terms $\tan ^{2} \theta+\tan \theta$, or $\sec ^{2} \theta+\tan \theta$	B1 + B1
	Evaluate a constant, or use limits $x=1, \theta=\frac{1}{4} \pi$, in a solution with two terms of the form $a x^{2}$ and $b \tan \theta$, where $a b \neq 0$	M1
	State correct answer in any form, e.g. $\frac{1}{2} x^{2}=\tan ^{2} \theta+\tan \theta-\frac{3}{2}$	A1
	Substitute $\theta=\frac{1}{3} \pi$ and obtain $x=2.54$	A1
		7

Question	Answer	Marks
$7(\mathrm{i})$	Sketch a relevant graph, e.g. $y=\mathrm{e}^{2 x}$	B1
	Sketch a second relevant graph, e.g. $y=6+\mathrm{e}^{-x}$, and justify the given statement	B1
		7(ii)
	Calculate the value of a relevant expression or values of a pair of relevant expressions at $x=0.5$ and $x=1$	M1
	Complete the argument correctly with correct calculated values	A1
		$\mathbf{2}$
7 (iii)	State a suitable equation, e.g. $x=\frac{1}{3} \ln \left(1+6 e^{x}\right)$	B1
	Rearrange this as $\mathrm{e}^{2 x}=6+\mathrm{e}^{-x}$, or commence working vice versa	B1
		$\mathbf{2}$

Question	Answer	Marks
7 (iv)	Use the iterative formula correctly at least once	M1
	Obtain final answer 0.928	A1
	Show sufficient iterations to 5 d.p. to justify 0.928 to 3 d.p., or show there is a sign change in the interval $(0.9275,0.9285)$	A1
		$\mathbf{3}$

Question	Answer	Marks
8(i)	State or imply the form $\frac{A}{2 x+1}+\frac{B x+C}{x^{2}+9}$	B1
	Use a correct method for finding a constant	M1
	Obtain one of $A=3, B=1$ and $C=0$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		5
8(ii)	Integrate and obtain term $\frac{3}{2} \ln (2 x+1)$ (FT on A value)	B1 FT
	Integrate and obtain term of the form $k \ln \left(x^{2}+9\right)$	M1
	Obtain term $\frac{1}{2} \ln \left(x^{2}+9\right)$ (FT on B value)	A1 FT
	Substitute limits correctly in an integral of the form $a \ln (2 x+1)+b \ln \left(x^{2}+9\right)$, where $a b \neq 0$	M1
	Obtain answer $\ln 45$ after full and correct working	A1
		5

Question	Answer	Marks
9(i)(a)	Substitute $x=1+2 \mathrm{i}$ in the equation and attempt expansions of x^{2} and x^{3}	M1
	Use $\mathrm{i}^{2}=-1$ correctly at least once and solve for k	M1
	Obtain answer $k=15$	A1
		3
9(i)(b)	State answer 1-2i	B1
	Carry out a complete method for finding a quadratic factor with zeros $1+2 \mathrm{i}$ and 1-2i	M1
	Obtain $x^{2}-2 x+5$	A1
	Obtain root $-\frac{3}{2}$, or equivalent, via division or inspection	A1
		4
9(ii)	Show a circle with centre $1+2 \mathrm{i}$	B1
	Show a circle with radius 1	B1
	Carry out a complete method for calculating the least value of $\arg z$	M1
	Obtain answer 0.64	A1
		4

Question	Answer	Marks
$10(\mathrm{i})$	Express general point of l in component form, e.g. $\mathbf{r}=(4+\mu) \mathbf{i}+(3+2 \mu) \mathbf{j}+(-1-2 \mu) \mathbf{k}$, or equivalent NB: Calling the vector $\mathbf{a}+\mu \mathbf{b}$, the $\mathbf{B 1}$ is earned by a correct reduction of the sum to a single vector or by expressing the substitution as a distributed sum $\mathbf{a . n}+\mu \mathbf{b . n}$	$\mathbf{B 1}$
	Substitute in given equation of p and solve for μ	M1
	Obtain final answer $2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ from $\mu=-2$	$\mathbf{A 1}$
		$\mathbf{3}$

Question	Answer	Marks
10(ii)	Using the correct process, evaluate the scalar product of a direction vector for l and a normal for p	M1
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and find the inverse sine or cosine of the result	M1
	Obtain answer 10.3° (or 0.179 radians)	A1
		3
10(iii)	EITHER: State $a+2 b-2 c=0$ or $2 a-3 b-c=0$	(B1
	Obtain two relevant equations and solve for one ratio, e.g. $a: b$	M1
	Obtain $a: b: c=8: 3: 7$, or equivalent	A1
	Substitute a, b, c and given point and evaluate d	M1
	Obtain answer $8 x+3 y+7 z=5$	A1)
	OR1: Attempt to calculate vector product of relevant vectors, e.g. $(2 \mathbf{i}-3 \mathbf{j}-\mathbf{k}) \times(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k})$	(M1
	Obtain two correct components of the product	A1
	Obtain correct product, e.g. $8 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}$	A1
	Use the product and the given point to find d	M1
	Obtain answer $8 x+3 y+7 z=5$, or equivalent	A1)
	OR2: Attempt to form a 2-parameter equation with relevant vectors	(M1
	State a correct equation, e.g. $\mathbf{r}=4 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}-2 \mathbf{k})+\mu(2 \mathbf{i}-3 \mathbf{j}-\mathbf{k})$	A1
	State 3 equations in x, y, z, λ and μ	A1
	Eliminate λ and μ	M1
	State answer $8 x+3 y+7 z=5$, or equivalent	A1)
		5

