Question	Answer	Marks	Guidance
1	<i>EITHER:</i> State or imply non-modular inequality $(5x+2)^2 > (4x+3)^2$ or corresponding equation or pair of linear equations	(B1	
	Attempt solution of 3-term quadratic equation or of 2 linear equations	M1	
	Obtain critical values $-\frac{5}{9}$ and 1	A1	And no others
	State answer $x < -\frac{5}{9}$, $x > 1$	A1)	
	<i>OR:</i> Obtain critical value $x = 1$ from graph, inspection, equation	(B1	
	Obtain critical value $x = -\frac{5}{9}$ similarly	B2	
	State answer $x < -\frac{5}{9}$, $x > 1$	B1)	
		4	

Question	Answer	Marks	Guidance
2	Differentiate using product rule	*M1	Obtaining form $k_1 \sin \frac{1}{2}x + k_2 x \cos \frac{1}{2}x$
	Obtain correct $4\sin\frac{1}{2}x + 2x\cos\frac{1}{2}x$ or unsimplified equivalent	A1	
	Attempt equation of tangent with numerical value for gradient	DM1	Dependent on first M1
	Obtain $y = 4x$	A1	
		4	

Question	Answer	Marks	Guidance
3(i)	Use y-values $\ln 2$, $\ln 4$, $\ln 6$, $\ln 8$, $\ln 10$	B1	Or decimal equivalents
	Use correct formula, or equivalent, with $h = 2$ and five <i>y</i> -values	M1	
	Obtain 13.5	A1	
		3	
3(ii)	Recognise integrand as $6\ln(x+2)$	B1	
	Obtain 81 or 81.0 or 81.1	B1	
		2	

Question	Answer	Marks	Guidance
4(i)	Substitute $x = -3$ and simplify	M1	
	Obtain $-108 + 36 + 87 - 15 = 0$ or equivalent and conclude	A1	
		2	
4(ii)	Attempt <u>either</u> division by $x + 3$ to reach at least partial quotient $4x^2 + kx$ <u>or</u> use of identity <u>or</u> inspection	M1	
	Obtain quotient $4x^2 - 8x - 5$	A1	
	Conclude $(x+3)(2x-5)(2x+1)$	A1	
		3	

9709/22

Cambridge International AS Level – Mark Scheme **PUBLISHED**

March 2018

970	09	m1	8	ms	22

Question	Answer	Marks	Guidance
4(iii)	Identify $2^u = \frac{5}{2}$	B 1	Ignoring other values at this stage
	Apply logarithms and use power law for $2^{u} = c$ where $c > 0$	M1	
	Obtain $u = 1.32$	A1	And no other values
		3	

Question	Answer	Marks	Guidance
5(i)	Integrate to obtain $-2e^{-2x}$	B1	
	Apply limits correctly to integral of form ke^{-2x}	M1	
	Obtain $-2e^{-4a} + 2e^{2a} = 25$	A1	
	Rearrange to confirm $a = \frac{1}{2} \ln(12.5 + e^{-4a})$	A1	AG; necessary detail needed
		4	
5(ii)	Consider sign of $a - \frac{1}{2} \ln(12.5 + e^{-4a})$ or equivalent for 1.0 and 1.5	M1	
	Obtain -0.26 and 0.24 or equivalent and justify conclusion	A1	AG; necessary detail needed
		2	

Question	Answer	Marks	Guidance
5(iii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.263	A1	
	Show sufficient iterations to 6 sf to justify answer <u>or</u> show a sign change in the interval (1.2625, 1.2635)	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	Express LHS in terms of $\sin 2x$ and $\cos 2x$ and attempt to express in terms of $\sin x$ and $\cos x$	*M1	
	Obtain correct $\frac{1}{2\sin x \cos x} + \frac{\cos^2 x - \sin^2 x}{2\sin x \cos x}$ or equivalent	A1	Perhaps using $\cos 2x = 2\cos^2 x - 1$ immediately
	Simplify as far as single terms involving <i>x</i> in numerator and denominator	DM1	Dependent on first M mark
	Confirm cot <i>x</i>	A1	AG; necessary detail needed
		4	
6(ii)	Express in terms of $\sin \frac{1}{6}\pi$ and $\cos \frac{1}{6}\pi$ or $\sin \frac{1}{6}\pi$ and $\tan \frac{1}{6}\pi$	M1	
	Obtain $2 + \sqrt{3}$	A1	
		2	

Question	Answer	Marks	Guidance
6(iii)	State $\int \sin 2x \cot 2x dx$	B1	Condoning absence of dx
	State $\int \cos 2x dx$	B1	Condoning absence of dx
	Obtain $\frac{1}{2}\sin 2x + c$	B1	
		3	

Question	Answer	Marks	Guidance
7(i)	Obtain expression for $\frac{dy}{dx}$ with numerator quadratic, denominator linear	M1	Or equivalent where separate derivatives evaluated first when $t = 3$
	Obtain $\frac{3t^2 - 6t}{2t + 4}$	A1	
	Identify $t = 3$ at P	B1	
	Obtain $\frac{9}{10}$ or equivalent	A1	
		4	
7(ii)	Equate first derivative to zero and obtain non-zero value of <i>t</i>	M1	
	Obtain $t = 2$	A1	
	Substitute to obtain $(12, -4)$	A1	
		3	

March 2018

9709_m18_ms_22

Question	Answer	Marks	Guidance
7(iii)	Equate expression for gradient to <i>m</i> and rearrange to confirm $3t^2 - (2m+6)t - 4m = 0$	B1	AG; necessary detail needed
	Attempt solution of quadratic inequality or equation resulting from discriminant	M1	
	Obtain critical values $-\sqrt{72} - 9$ and $\sqrt{72} - 9$	A1	Or exact equivalents
	Conclude $m \leq -\sqrt{72} - 9$, $m \geq \sqrt{72} - 9$	A1	Or exact equivalents
		4	