Question	Answer	Marks	Guidance
1	EITHER: State or imply non-modular inequality $(5 x+2)^{2}>(4 x+3)^{2}$ or corresponding equation or pair of linear equations	(B1	
	Attempt solution of 3-term quadratic equation or of 2 linear equations	M1	
	Obtain critical values $-\frac{5}{9}$ and 1	A1	And no others
	State answer $x<-\frac{5}{9}, \quad x>1$	A1)	
	OR: Obtain critical value $x=1$ from graph, inspection, equation	(B1	
	Obtain critical value $x=-\frac{5}{9}$ similarly	B2	
	State answer $x<-\frac{5}{9}, \quad x>1$	B1)	
		4	

Question	Answer	Marks	
2	Differentiate using product rule	$* \mathbf{M 1}$	Obtaining form $k_{1} \sin \frac{1}{2} x+k_{2} x \cos \frac{1}{2} x$
	Obtain correct $4 \sin \frac{1}{2} x+2 x \cos \frac{1}{2} x$ or unsimplified equivalent	A1	
	Attempt equation of tangent with numerical value for gradient	DM1	Dependent on first M1
	Obtain $y=4 x$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$3(\mathrm{i})$	Use y-values $\ln 2, \ln 4, \ln 6, \ln 8, \ln 10$	B1	Or decimal equivalents
	Use correct formula, or equivalent, with $h=2$ and five y-values	M1	
	Obtain 13.5	A1	
		3	
3 (ii)	Recognise integrand as $6 \ln (x+2)$	B1	
	Obtain 81 or 81.0 or 81.1	B1	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	Substitute $x=-3$ and simplify	M1	
	Obtain $-108+36+87-15=0$ or equivalent and conclude	A1	
	$4($ ii)	Attempt either division by $x+3$ to reach at least partial quotient $4 x^{2}+k x$ or use of identity $\underline{\text { or inspection }}$	M1
		A1	
		A1	

Question	Answer	Marks	Guidance
4 (iii)	Identify $2^{u}=\frac{5}{2}$	B1	Ignoring other values at this stage
	Apply logarithms and use power law for $2^{u}=c$ where $c>0$	$\mathbf{M 1}$	
	Obtain $u=1.32$	A1	And no other values
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	Integrate to obtain $-2 \mathrm{e}^{-2 x}$	B1	
	Apply limits correctly to integral of form $k \mathrm{e}^{-2 x}$	M1	
	Obtain $-2 \mathrm{e}^{-4 a}+2 \mathrm{e}^{2 a}=25$	A1	
	Rearrange to confirm $a=\frac{1}{2} \ln \left(12.5+\mathrm{e}^{-4 a}\right)$	A1	AG; necessary detail needed
			$\mathbf{4}$
$5(\mathrm{ii})$	Consider sign of $a-\frac{1}{2} \ln \left(12.5+\mathrm{e}^{-4 a}\right)$ or equivalent for 1.0 and 1.5	M1	
	Obtain -0.26 and 0.24 or equivalent and justify conclusion	A1	AG; necessary detail needed
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5 (iii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.263	A1	
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval $(1.2625,1.2635)$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6 (i)	Express LHS in terms of $\sin 2 x$ and $\cos 2 x$ and attempt to express in terms of $\sin x$ and $\cos x$	*M1	
	Obtain correct $\frac{1}{2 \sin x \cos x}+\frac{\cos ^{2} x-\sin ^{2} x}{2 \sin x \cos x}$ or equivalent	A1	Perhaps using $\cos 2 x=2 \cos ^{2} x-1$ immediately
	Simplify as far as single terms involving x in numerator and denominator	DM1	Dependent on first M mark
	Confirm $\cot x$	A1	AG; necessary detail needed
		4	
6(ii)	Express in terms of $\sin \frac{1}{6} \pi$ and $\cos \frac{1}{6} \pi$ or $\sin \frac{1}{6} \pi$ and $\tan \frac{1}{6} \pi$	M1	
	Obtain $2+\sqrt{3}$	A1	
		2	

Question	Answer	Marks	
6 (iii)	State $\int \sin 2 x \cot 2 x \mathrm{~d} x$	B1	Condoning absence of $\mathrm{d} x$
	State $\int \cos 2 x \mathrm{~d} x$	B1	Condoning absence of $\mathrm{d} x$
	Obtain $\frac{1}{2} \sin 2 x+c$	B1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(i)	Obtain expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with numerator quadratic, denominator linear	M1	Or equivalent where separate derivatives evaluated first when $t=3$
	Obtain $\frac{3 t^{2}-6 t}{2 t+4}$	A1	
	Identify $t=3$ at P	B1	
	Obtain $\frac{9}{10}$ or equivalent	A1	
		4	
7(ii)	Equate first derivative to zero and obtain non-zero value of t	M1	
	Obtain $t=2$	A1	
	Substitute to obtain (12, - 4)	A1	
		3	

Question	Answer	Marks	Guidance
7 (iii)	Equate expression for gradient to m and rearrange to confirm $3 t^{2}-(2 m+6) t-4 m=0$	B1	AG; necessary detail needed
	Attempt solution of quadratic inequality or equation resulting from discriminant	M1	
	Obtain critical values $-\sqrt{72}-9$ and $\sqrt{72}-9$	A1	Or exact equivalents
	Conclude $m \leqslant-\sqrt{72}-9, m \geqslant \sqrt{72}-9$	A1	Or exact equivalents
		$\mathbf{4}$	

