Question	Answer	Marks	Guidance
1	$(y) = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} - 3x (+c)$	B1B1	
	Sub $(4, -6) -6 = 4 - 12 + c \rightarrow c = 2$	M1A1	Expect $(y) = 2x^{\frac{1}{2}} - 3x + 2$
		4	

Question	Answer	Marks	Guidance
2(i)	$^{7}C_{2}(+/-2x)^{2}$ or $^{7}C_{3}(-2x)^{3}$	M1	SOI, Allow for either term correct. Allow + or – inside first bracket.
	$84(x^2), -280(x^3)$	A1A1	
		3	
2(ii)	$2 \times (their - 280) + 5 \times (their 84)$ only	M1	
	-140	A1	
		2	

Question	Answer	Marks	Guidance
3(i)	$40+60 \times 1.2 = 112$	M1A1	Allow 1.12 m. Allow M1 for 40 + 59 × 1.2 OE
		2	

Question	Answer	Marks	Guidance
3(ii)	Find rate of growth e.g. 41.2/40 or 1.2/40	*M1	SOI, Also implied by 3%, 0.03 or 1.03 seen
	$40 \times (1 + their 0.03)^{60 or 59}$	DM1	
	236	A1	Allow 2.36 m
		3	

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{\sqrt{3}} = \frac{2}{x}$ or $y - 2 = \frac{-1}{\sqrt{3}}x$	M1	OE, Allow $y - 2 = \frac{+1}{\sqrt{3}}x$. Attempt to express $\tan \frac{\pi}{6} or \tan \frac{\pi}{3}$ <u>exactly</u> is required or the use of $1/\sqrt{3} or \sqrt{3}$
	$(x=)2\sqrt{3}$	A1	OE
		2	
4(ii)	Mid-point $(a, b) = (\frac{1}{2} their (i), 1)$	B1FT	Expect $(\sqrt{3}, 1)$
	Gradient of AB leading to gradient of bisector, m	M1	Expect $-1/\sqrt{3}$ leading to $m = \sqrt{3}$
	Equation is $y - their b = m(x - their a)$ OE	DM1	Expect $y-1 = \sqrt{3}(x-\sqrt{3})$
	$y = \sqrt{3} x - 2$ OE	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

9709_m18_ms_12

Question	Answer	Marks	Guidance
5(a)	$2\tan x + 5 = 2\tan^2 x + 5\tan x + 3 \rightarrow 2\tan^2 x + 3\tan x - 2(=0)$	M1A1	Multiply by denom., collect like terms to produce 3-term quad. in tanx
	0.464 (accept 0.148π), 2.03 (accept 0.648π)	A1A1	SCA1 for both in degrees 26.6°, 116.6° only
		4	
5(b)	$\alpha = 30^{\circ}$ $k = 4$	B1B1	Accept $\alpha = \pi / 6$
		2	

Question	Answer	Marks	Guidance
6(i)	$\frac{PQ}{2} = 10 \times \sin 1.1$	M1	Correct use of sin/cos rule
	(PQ =) 17.8 (17.82implies M1, A1) AG	A1	OR $PQ = \frac{10\sin 2.2}{\sin\left(\frac{\pi}{2} - 1.1\right)} or \frac{10\sin 2.2}{\sin 0.4708} or \sqrt{200 - 200\cos 2.2} = 17.8$
		2	
6(ii)	Angle $OPQ = (\pi/2 - 1.1)$ [accept 27°]	B1	OE Expect 0.4708 or 0.471. Can be scored in part (i)
	Arc $QR = 17.8 \times their (\pi/2 - 1.1)$	M1	Expect 8.39. (or 8.38).
	Perimeter = $17.8 - 10 + 10 + their \operatorname{arc} QR$	M1	
	26.2	A1	For both parts allow correct methods in degrees
		4	

Question	Answer	Marks	Guidance
7(i)	$\overline{CE} = -4\mathbf{i} - \mathbf{j} + 8\mathbf{k}$	B1	
	$ \overrightarrow{CE} = \sqrt{\left(\left(their - 4\right)^2 + \left(their - 1\right)^2 + \left(their 8\right)^2} = 9$	M1A1	Could use Pythagoras' theorem on triangle CDE
		3	
7(ii)	$\overrightarrow{CA} = 3\mathbf{i} - 3\mathbf{j} \text{ or } \overrightarrow{AC} = -3\mathbf{i} + 3\mathbf{j}$	B1	
	$\overrightarrow{CE} \cdot \overrightarrow{CA} = (-4\mathbf{i} - \mathbf{j} + 8\mathbf{k}) \cdot (3\mathbf{i} - 3\mathbf{j}) = -12 + 3 \text{ (Both vectors reversed ok)}$	M1	Scalar product of <i>their</i> \overrightarrow{CE} , \overrightarrow{CA} . One vector reversed ok for all M marks
	$\left \overrightarrow{CE} \mid \times \mid \overrightarrow{CA} \right = \sqrt{16 + 1 + 64} \times \sqrt{9 + 9}$	M1	Product of moduli of <i>their</i> \overrightarrow{CE} , \overrightarrow{CA}
	$\cos^{-1}\left(\frac{-12+3}{9\sqrt{18}}\right) = \cos^{-1}\left(\frac{-1}{\sqrt{18}}\right)$ $\left[\text{ or e.g. }\cos^{-1}\left(\frac{-3}{\sqrt{162}}\right), \cos^{-1}\left(\frac{-9}{\sqrt{1458}}\right)\right] \text{ etc.}$	A1A1	A1 for any correct expression, A1 for required form Equivalent answers must be in required form m/\sqrt{n} (<i>m</i> , <i>n</i> integers)
		5	

Question	Answer	Marks	Guidance
8(i)	$\mathrm{d}y / \mathrm{d}x = x - 6x^{\frac{1}{2}} + 8$	B2,1,0	
	Set to zero and attempt to solve a quadratic for $x^{\frac{1}{2}}$	M1	Could use a substitution for $x^{\frac{1}{2}}$ or rearrange and square correctly*
	$x^{\frac{1}{2}} = 4$ or $x^{\frac{1}{2}} = 2$ [$x = 2$ and $x = 4$ gets M1 A0]	A1	Implies M1. 'Correct' roots for <i>their</i> dy/dx also implies M1
	x = 16 or 4	A1FT	Squares of their solutions *Then A1,A1 for each answer
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

March 2018 9709_m18_ms_12

Question	Answer	Marks	Guidance
8(ii)	$d^2 y / dx^2 = 1 - 3x^{-1/2}$	B1FT	FT on <i>their</i> dy/dx , providing a fractional power of x is present
		1	
8(iii)	(When $x = 16$) $d^2 y / dx^2 = 1/4 > 0$ hence MIN	M1	Checking both of their values in their d^2y/dx^2
	(When $x = 4$) $d^2 y / dx^2 = -1/2 < 0$ hence MAX	A1	All correct Alternative methods ok but must be explicit about values of <i>x</i> being considered
		2	

Question	Answer	Marks	Guidance
9(i)	9(i) $1 + cx = cx^2 - 3x \rightarrow cx^2 - x(c+3) - 1 (= 0)$ M		Multiply throughout by x and rearrange terms on one side of equality
	Use $b^2 - 4ac \left[= (c+3)^2 + 4c = c^2 + 10c + 9 \text{ or } (c+5)^2 - 16 \right]$	M1	Select their correct coefficients which must contain 'c' twice Ignore = $0, < 0, >0$ etc. at this stage
	(Critical values) –1, –9	A1	SOI
	$c \leq -9, c \geq -1$	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2018

9709	m18	ms	12

Question	Answer	Marks	Guidance
9(ii)	Sub their <i>c</i> to obtain a quadratic $[c = -1 \rightarrow -x^2 - 2x - 1(=0)]$	M1	
	x = -1	A1	
	Sub their <i>c</i> to obtain a quadratic $[c = (-9 \rightarrow -9x^2 + 6x - 1(=0)]$	M1	
	x = 1/3	A1	[Alt 1: $dy/dx = -1/x^2 = c$, when $c = -1, x = \pm 1, c = -9, x = \pm \frac{1}{3}$ Give M1 for equating the gradients, A1 for all four answers and M1A1 for checking and eliminating] [Alt 2: $dy/dx = -1/x^2 = c$ leading to $1/x - 1/x^2 = (-1/x^2)(x) - 3$ Give M1 A1 at this stage and M1A1 for solving]
		4	

Question	Answer	Marks	Guidance
10(i)(a)	f(x) > 2	B1	Accept $y > 2$, $(2, \infty)$, $(2, \infty]$, range > 2
		1	
10(i)(b)	g(x) > 6	B1	Accept $y > 6$, (6, ∞), (6, ∞], <i>range</i> > 6
		1	
10(i)(c)	$2 < \mathrm{fg}(x) < 4$	B1	Accept 2 < <i>y</i> <4, (2, 4), 2 < <i>range</i> < 4
		1	

March 2018

<u>9709_m18_ms_12</u>

Question	Answer	Marks	Guidance
10(ii)	The range of f is (partly) outside the domain of g	B1	
		1	
10(iii)	$f'(x) = \frac{-8}{\left(x-2\right)^2}$	B1	SOI
	$y = \frac{8}{x-2} + 2 \rightarrow y-2 = \frac{8}{x-2} \rightarrow x-2 = \frac{8}{y-2}$	M1	Order of operations correct. Accept sign errors
	$f^{-1}(x) = \frac{8}{x-2} + 2$	A1	SOI
	$\frac{-48}{(x-2)^2} + \frac{16}{x-2} + 4 - 5 (<0) \rightarrow x^2 - 20x + 84 (<0)$	M1	Formation of 3-term quadratic in $x, (x-2)$ or $1/(x-2)$
	(x-6)(x-14) or 6, 14	A1	SOI
	2 < x < 6, x > 14	A1	САО
		6	

Question	Answer	Marks	Guidance
11(i)	$dy / dx = [-2] - [3(1-2x)^{2}] \times [-2] (= 4 - 24x + 24x^{2})$	B2,1,0	Award for the accuracy within each set of square brackets
	At $x = \frac{1}{2} \frac{dy}{dx} = -2$	B1	
	Gradient of line $y = 1 - 2x$ is -2 (hence <i>AB</i> is a tangent) AG	B1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2018

97	09	m18	8	ms	12

Question	Answer	Marks	Guidance
11(ii)	Shaded region = $\int_{0}^{\frac{1}{2}} (1-2x) - \int_{0}^{\frac{1}{2}} [1-2x-(1-2x)^{3}] \text{ oe}$	M1	Note: If area triangle OAB – area under the curve is used the first part of the integral for the area under the curve must be evaluated
	$= \int_{0}^{\frac{y}{2}} (1-2x)^{3} dx $ AG	A1	
		2	
11(iii)	Area = $\left[\frac{\left(1-2x\right)^4}{4}\right]$ [÷-2]	*B1B1	
	0 - (-1/8) = 1/8	DB1	OR $\int 1 - 6x + 12x^2 - 8x^3 = x - 3x^2 + 4x^3 - 2x^4$ (B2,1,0) Applying limits $0 \rightarrow \frac{1}{2}$
		3	