Question	Answer	Marks	Guidance
1	$(y)=\frac{x^{1 / 2}}{1 / 2}-3 x(+c)$	B1B1	
	Sub $(4,-6)-6=4-12+c \rightarrow c=2$	M1A1	Expect $(y)=2 x^{1 / 2}-3 x+2$
		4	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	${ }^{7} \mathrm{C}_{2}(+/-2 x)^{2}$ or ${ }^{7} \mathrm{C}_{3}(-2 x)^{3}$	$\mathbf{M 1}$	SOI, Allow for either term correct. Allow + or - inside first bracket.
	$84\left(x^{2}\right),-280\left(x^{3}\right)$	A1A1	
		$\mathbf{3}$	
	$2 \times($ their -280$)+5 \times($ their 84$)$ only	$\mathbf{M 1}$	
	-140	$\mathbf{2}$	

Question	Answer	Marks	Guidance
$3(\mathrm{i})$	$40+60 \times 1.2=112$	M1A1	Allow 1.12 m. Allow M1 for $40+59 \times 1.2 \mathrm{OE}$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3 (ii)	Find rate of growth e.g. $41.2 / 40$ or $1.2 / 40$	$* \mathbf{M 1}$	SOI, Also implied by $3 \%, 0.03$ or 1.03 seen
	$40 \times(1+\text { their } 0.03)^{60 \text { or } 59}$	DM1	
	236	$\mathbf{A 1}$	Allow 2.36 m
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{\sqrt{3}}=\frac{2}{x} \text { or } y-2=\frac{-1}{\sqrt{3}} x$	M1	OE, Allow $y-2=\frac{+1}{\sqrt{3}} x$. Attempt to express $\tan \frac{\pi}{6}$ or $\tan \frac{\pi}{3}$ exactly is required or the use of $1 / \sqrt{ } 3$ or $\sqrt{ } 3$
	$(x=) 2 \sqrt{3}$	A1	OE
		2	
4(ii)	Mid-point $(a, b)=(1 / 2$ their (i), 1$)$	B1FT	Expect ($\sqrt{ } 3,1)$
	Gradient of AB leading to gradient of bisector, m	M1	Expect $-1 / \sqrt{ } 3$ leading to $m=\sqrt{ } 3$
	Equation is y-their $b=m(x-$ their $a) \mathrm{OE}$	DM1	Expect $y-1=\sqrt{3}(x-\sqrt{3})$
	$y=\sqrt{3} x-2$ OE	A1	
		4	

Question	Answer	Marks	Guidance
5(a)	$2 \tan x+5=2 \tan ^{2} x+5 \tan x+3 \rightarrow 2 \tan ^{2} x+3 \tan x-2(=0)$	M1A1	Multiply by denom., collect like terms to produce 3-term quad. in $\tan x$
	0.464 (accept 0.148π), 2.03 (accept 0.648π)	A1A1	SCA1 for both in degrees $26.6^{\circ}, 116.6^{\circ}$ only
		4	
5(b)	$\alpha=30^{\circ} \quad k=4$	B1B1	Accept $\alpha=\pi / 6$
		2	

Question	Answer		Marks	Guidance
6 (i)	$\frac{P Q}{2}=10 \times \sin 1.1$		M1	Correct use of sin/cos rule
	$(P Q=) 17.8$ (17.82...implies M1, A1)	AG	A1	$\text { OR } P Q=\frac{10 \sin 2.2}{\sin \left(\frac{\pi}{2}-1.1\right)} \text { or } \frac{10 \sin 2.2}{\sin 0.4708} \text { or } \sqrt{200-200 \cos 2.2}=17.8$
			2	
6(ii)	Angle $O P Q=(\pi / 2-1.1)\left[\right.$ accept 27°]		B1	OE Expect 0.4708 or 0.471 . Can be scored in part (i)
	Arc $Q R=17.8 \times$ their $(\pi / 2-1.1)$		M1	Expect 8.39. (or 8.38).
	Perimeter $=17.8-10+10+$ their $\operatorname{arc} Q R$		M1	
	26.2		A1	For both parts allow correct methods in degrees
			4	

Question	Answer	Marks	Guidance
7(i)	$\overrightarrow{C E}=-4 \mathbf{i}-\mathbf{j}+8 \mathbf{k}$	B1	
	$\|\overrightarrow{C E}\|=\sqrt{\left((\text { their }-4)^{2}+(\text { their }-1)^{2}+(\text { their } 8)^{2}\right.}=9$	M1A1	Could use Pythagoras' theorem on triangle $C D E$
		3	
7(ii)	$\overrightarrow{C A}=3 \mathbf{i}-3 \mathbf{j}$ or $\overrightarrow{A C}=-3 \mathbf{i}+3 \mathbf{j}$	B1	
	$\overrightarrow{C E} \cdot \overrightarrow{C A}=(-4 \mathbf{i}-\mathbf{j}+8 \mathbf{k}) \cdot(3 \mathbf{i}-3 \mathbf{j})=-12+3$ (Both vectors reversed ok)	M1	Scalar product of their $\overrightarrow{C E}, \overrightarrow{C A}$. One vector reversed ok for all \mathbf{M} marks
	$\|\overrightarrow{C E}\| \times\|\overrightarrow{C A}\|=\sqrt{16+1+64} \times \sqrt{9+9}$	M1	Product of moduli of their $\overrightarrow{C E}, \overrightarrow{C A}$
	$\begin{aligned} & \cos ^{-1}\left(\frac{-12+3}{9 \sqrt{18}}\right)=\cos ^{-1}\left(\frac{-1}{\sqrt{18}}\right) \\ & {\left[\text { or e.g. } \cos ^{-1}\left(\frac{-3}{\sqrt{162}}\right), \cos ^{-1}\left(\frac{-9}{\sqrt{1458}}\right)\right] \text { etc. }} \end{aligned}$	A1A1	A1 for any correct expression, A1 for required form Equivalent answers must be in required form $m / \sqrt{ } n$ (m, n integers)
		5	

Question	Answer	Marks	Guidance
8(i)	$\mathrm{d} y / \mathrm{d} x=x-6 x^{1 / 2}+8$	B2,1,0	
	Set to zero and attempt to solve a quadratic for $x^{1 / 2}$	M1	Could use a substitution for $x^{1 / 2}$ or rearrange and square correctly*
	$x^{1 / 2}=4$ or $x^{1 / 2}=2[x=2$ and $x=4$ gets M1 A0]	A1	Implies M1. 'Correct' roots for their $\mathrm{d} y / \mathrm{d} x$ also implies M1
	$x=16$ or 4	A1FT	Squares of their solutions *Then A1,A1 for each answer
		5	

Question	Answer	Marks	Guidance
$8($ ii)	$\mathrm{d}^{2} y / \mathrm{d} x^{2}=1-3 x^{-1 / 2}$	B1FT	FT on their $\mathrm{d} y / \mathrm{d} x$, providing a fractional power of x is present
		$\mathbf{1}$	
	$($ When $x=16) \mathrm{d}^{2} y / \mathrm{d} x^{2}=1 / 4>0$ hence MIN	M1	Checking both of their values in their $\mathrm{d}^{2} y / \mathrm{d} x^{2}$
	(When $x=4) \mathrm{d}^{2} y / \mathrm{d} x^{2}=-1 / 2<0$ hence MAX	A1	All correct Alternative methods ok but must be explicit about values of x being considered
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
$9(\mathrm{i})$	$1+c x=c x^{2}-3 x \rightarrow c x^{2}-x(c+3)-1(=0)$	M1	Multiply throughout by x and rearrange terms on one side of equality
	Use $b^{2}-4 a c\left[=(c+3)^{2}+4 c=c^{2}+10 c+9\right.$ or $\left.(c+5)^{2}-16\right]$	M1	Select their correct coefficients which must contain ' c ' twice Ignore $=0,<0,>0$ etc. at this stage
	$($ Critical values $)-1,-9$	A1	SOI
	$c \leqslant-9, c \geqslant-1$	$\mathbf{A 1}$	$\mathbf{4}$

Question	Answer	Marks	Guidance
9(ii)	Sub their c to obtain a quadratic $\left[c=-1 \rightarrow-x^{2}-2 x-1(=0)\right]$	M1	
	$x=-1$	A1	
	Sub their c to obtain a quadratic $\left[c=\left(-9 \rightarrow-9 x^{2}+6 x-1(=0)\right]\right.$	M1	
	$x=1 / 3$	A1	[Alt 1: $d y / d x=-1 / x^{2}=c$, when $c=-1, x= \pm 1, c=-9, x= \pm \frac{1}{3}$ Give M1 for equating the gradients, A1 for all four answers and M1A1 for checking and eliminating] [Alt 2: $d y / d x=-1 / x^{2}=c$ leading to $1 / x-1 / x^{2}=\left(-1 / x^{2}\right)(x)-3$ Give M1 A1 at this stage and M1A1 for solving]
		4	

Question	Answer	Marks	Guidance
$10(\mathrm{i})(\mathrm{a})$	$\mathrm{f}(x)>2$	$\mathbf{B 1}$	Accept $y>2,(2, \infty),(2, \infty]$, range >2
		$\mathbf{1}$	
	$\mathrm{g}(x)>6$	$\mathbf{B 1}$	Accept $y>6,(6, \infty),(6, \infty]$, range >6
		$\mathbf{1}$	
$10(\mathrm{i})(\mathrm{c})$	$2<\operatorname{fg}(x)<4$	$\mathbf{B 1}$	Accept $2<y<4,(2,4), 2<$ range <4
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
10(ii)	The range of f is (partly) outside the domain of g	B1	
		1	
10(iii)	$\mathrm{f}^{\prime}(x)=\frac{-8}{(x-2)^{2}}$	B1	SOI
	$y=\frac{8}{x-2}+2 \rightarrow y-2=\frac{8}{x-2} \rightarrow x-2=\frac{8}{y-2}$	M1	Order of operations correct. Accept sign errors
	$\mathrm{f}^{-1}(x)=\frac{8}{x-2}+2$	A1	SOI
	$\frac{-48}{(x-2)^{2}}+\frac{16}{x-2}+4-5(<0) \rightarrow x^{2}-20 x+84 \quad(<0)$	M1	Formation of 3-term quadratic in $x,(x-2)$ or $1 /(x-2)$
	$(x-6)(x-14)$ or 6,14	A1	SOI
	$2<x<6, x>14$	A1	CAO
		6	

Question	Answer	Marks	Guidance
$11(\mathrm{i})$	$\mathrm{d} y / \mathrm{d} x=[-2]-\left[3(1-2 x)^{2}\right] \times[-2]\left(=4-24 x+24 x^{2}\right)$	$\mathbf{B 2 , 1 , 0}$	Award for the accuracy within each set of square brackets
	At $x=1 / 2 \mathrm{~d} y / \mathrm{d} x=-2$	$\mathbf{B 1}$	
	Gradient of line $y=1-2 x$ is -2 (hence $A B$ is a tangent)	AG	$\mathbf{B 1}$
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
11(ii)	Shaded region $=\int_{0}^{1 / 2}(1-2 x)-\int_{0}^{1 / 2}\left[1-2 x-(1-2 x)^{3}\right]$ oe	M1	Note: If area triangle OAB - area under the curve is used the first part of the integral for the area under the curve must be evaluated
	$=\int_{0}^{1 / 2}(1-2 x)^{3} \mathrm{~d} x$	A1	
		2	
11(iii)	Area $=\left[\frac{(1-2 x)^{4}}{4}\right][\div-2]$	*B1B1	
	$0-(-1 / 8)=1 / 8$	DB1	OR $\int 1-6 x+12 x^{2}-8 x^{3}=x-3 x^{2}+4 x^{3}-2 x^{4}(\mathbf{B} 2,1,0)$ Applying limits $0 \rightarrow 1 / 2$
		3	

