Question	Answer	Marks	Guidance
1	$Var(Ps) = \frac{0.3(1-0.3)}{120} \ (= 0.00175)$	M1	Attempt correct values in correct formula
	$0.3 \pm z \sqrt{"0.00175"}$	M1	must be a <i>z</i> -value, not a prob
	z = 1.645	B1	
	CI = 0.231 to 0.369 (3 sf)	A1	
	Total:	4	

Question	Answer	Marks	Guidance
2(i)	(H ₁): $\mu \neq 6.4$	B1	
	Total:	1	
2(ii)	comp 2.43 with a <i>z</i> -value $z = 2.576$ AND	M1	oe valid comparison
	No evidence that μ is not 6.4 or do not reject $\mu = 6.4$	A1	Allow "Accept $\mu = 6.4$ " Must mention μ , not just "H ₀ " or "H ₁ "
	Total:	2	
2(iii)	Testing for an increase in μ , or for a decrease in μ , rather than a change	B1	Any equiv statement
	Total:	1	

Question	Answer	Marks	Guidance
3(i)	$\frac{53-52}{6.1\pm\sqrt{75}}$ (= 1.420)	M1	
	$\frac{51-52}{6.1\div\sqrt{75}} \qquad (=-1.420)$	M1	or –"1.420" seen
	Φ("1.420") – Φ("–1.420")	M1	
	= 0.844 (3 sfs)	A1	
	Total:	4	
3(ii)	Need to assume \overline{X} (approx.) normally distributed	B1	or X not stated to be normally distributed
	Total:	1	

Question	Answer	Marks	Guidance
4(i)	$(\lambda =) 4.5$	B1	
	$e^{-4.5}(1+4.5+\frac{4.5^2}{2!})$	M1	Allow any λ . Allow one end error
	= 0.174	A1	
	Total:	3	
4(ii)	Accept reduction in mean no. of missed appts although untrue	B1	or Mean is 0.9 (or 4.5) but < 3 missed appts. In context
	Total:	1	
4(iii)	$P(X \ge 3)$	M1	Attempted
	$= 1 - e^{-1}(1 + 1 + \frac{1^2}{2!})$	M1	Allow any λ except 4.5 or 0.9, Allow one end error
	= 0.0803 (3 sfs)	A1	
	Total:	3	

Question	Answer	Marks	Guidance
5(a)(i)	<i>k</i> = 1	B1	
	Total:	1	
5(a)(ii)	f_2 : area > 1 (area \neq 1)	B1	oe
	f ₃ : includes negative values of f ₃	B1	oe
	Total:	2	
5(b)(i)	$6\int_{-a}^{a} (a^2 - x^2) dx = 1$	M1	Integ $f(x) = 1$, ignore limits
	$6[a^2x - \frac{x^3}{3}]_{-a}^{a} = 1$	A1	Correct integral and limits
	$6(2a^{3} - \frac{2a^{3}}{3}) = 1$ $\frac{24a^{3}}{3} = 1 \text{ or } 8a^{3} = 1$ $a = 1/2 \qquad \text{AG}$	A1	Correctly obtained. No errors seen. (SR Verification scores M1A1 only max 2/3)
	Total:	3	

Question	Answer	Marks	Guidance
5(b)(ii)	0	B1	
	Total:	1	
5(b)(iii)	$6\int_{-0.5}^{0.5} \left(\frac{x^2}{4} - x^4\right) dx$ (= 6\[\frac{x^3}{12} - \frac{x^5}{5}\]_{-0.5}^{0.5} = 0.05) Var = 0.05 - 0^2	M1	attempt int $x^2 f(x)$ & correct limits
	= 0.05 oe	A1	cao; allow omission of -0^2
	Total:	2	

Question	Answer	Marks	Guidance
6(i)	Assume cartons are random sample(s)	B1	or masses of cartons are independent of each other oe
	E(T) = 816.4 Var(T) = 1570.08	B1	Both
	$z = \frac{900 - "816.4"}{\sqrt{"1570.08"}} \qquad (= 2.110)$	M1	
	1 – Φ("2.110")	M1	
	= 0.0174 = 1.74% (3 sfs)	A1	% only (accept 1.7% if 0.0174 seen)
	Total:	5	
6(ii)	P(F-S > 0) stated or implied	M1	$\mathbf{P}(S-F<0)$
	$\begin{array}{l} 62.0 - 78.8 (= -16.8) \\ \& \ 10.0^2 + 12.6^2 (= 258.76) \end{array}$	B1	78.8 - 62.0 (= 16.8) & 12.62 + 10.02 (= 258.76)
	$z = \frac{0 - ("-16.8")}{\sqrt{"258.76"}} \ (= 1.044)$	M1	$z = \frac{0 - "16.8"}{\sqrt{"258.76}"} \ (= -1.044)$
	1 – Φ("1.044")	M1	$\Phi(``-1.044'') = 1 - \Phi(``1.044'')$
	(= 1 - 0.8517) = 0.148 (3 sfs)	A1	
	Total:	5	

Question	Answer	Marks	Guidance
7(i)	Planes arrive at constant mean rate	B1	
	Planes arrive at random	B1	or Planes arrive independently Must be in context
	Total:	2	
7(ii)(a)	$(\lambda =) 5.2 \div 4$	M1	
	$e^{-1.3}(\frac{1.3^2}{2}+\frac{1.3^3}{3!})$	M1	Allow any λ , allow one end error
	= 0.330 (3 sfs)	A1	Accept 0.33
	Total:	3	
7(ii)(b)	$1 - e^{-3.467} \times (1 + 3.467 + \frac{3.467^2}{2!} + \frac{3.467^3}{3!})$	M1	Allow any λ except 5.2 or 1.3, allow one end error
	= 0.456 (3 sfs)	A1	
	Total:	2	
7(iii)	N(52, 52) stated or implied	B1	
	$\frac{60.5-52}{\sqrt{52}}$ (= 1.179)	M1	ft their mean and var. Allow wrong or no cc or no $$
	Φ("1.179")	M1	
	= 0.881 (3 sf)	A1	
	Total:	4	