Question	Answer	Marks	Guidance
1	$\operatorname{Var}(P s)=\frac{0.3(1-0.3)}{120}(=0.00175)$	M1	Attempt correct values in correct formula
	$0.3 \pm z \sqrt{40.00175 "}$	M1	must be a z-value, not a prob
	$z=1.645$	B1	
	$\mathrm{CI}=0.231$ to $0.369(3 \mathrm{sf})$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2(i)	$\left(\mathrm{H}_{1}\right): \mu \neq 6.4$	B1	
	Total:	1	
2(ii)	$\text { comp } 2.43 \text { with a } z \text {-value }$ $z=2.576 \text { AND }$	M1	oe valid comparison
	No evidence that μ is not 6.4 or do not reject $\mu=6.4$	A1	Allow "Accept $\mu=6.4$ " Must mention μ, not just " H_{0} " or " H_{1} "
	Total:	2	
2(iii)	Testing for an increase in μ, or for a decrease in μ, rather than a change	B1	Any equiv statement
	Total:	1	

Question		Answer	Marks	Guidance
3(i)	$\frac{53-52}{6.1+\sqrt{75}}$	($=1.420$)	M1	
	$\frac{51-52}{6.1+\sqrt{75}}$	$(=-1.420)$	M1	or -"1.420" seen
	Φ ("1.4	("-1.420")	M1	
	$=0.844$		A1	
		Total:	4	
3(ii)	Need to assume \bar{X} (approx.) normally distributed		B1	or X not stated to be normally distributed
		Total:	1	

Question	Answer	Marks	Guidance
4(i)	($\lambda=$) 4.5	B1	
	$\mathrm{e}^{-4.5}\left(1+4.5+\frac{4.5{ }^{2}}{2!}\right)$	M1	Allow any λ. Allow one end error
	$=0.174$	A1	
	Total:	3	
4(ii)	Accept reduction in mean no. of missed appts although untrue	B1	or Mean is 0.9 (or 4.5) but <3 missed appts. In context
	Total:	1	
4(iii)	$\mathrm{P}(X \geqslant 3)$	M1	Attempted
	$=1-\mathrm{e}^{-1}\left(1+1+\frac{1^{2}}{2!}\right)$	M1	Allow any λ except 4.5 or 0.9 , Allow one end error
	$=0.0803(3 \mathrm{sfs})$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
5(a)(i)	$k=1$	B1	
	Total:	1	
5(a)(ii)	$\mathrm{f}_{2}:$ area $>1(\operatorname{area} \neq 1)$	B1	oe
	f_{3} : includes negative values of f_{3}	B1	oe
	Total:	2	
5(b)(i)	$6 \int_{-a}^{a}\left(a^{2}-x^{2}\right) \mathrm{d} x=1$	M1	Integ $\mathrm{f}(x)=1$, ignore limits
	$6\left[a^{2} x-\frac{x^{3}}{3}\right]{ }_{-a}^{a}=1$	A1	Correct integral and limits
	$\begin{align*} & 6\left(2 a^{3}-\frac{2 a^{3}}{3}\right)=1 \\ & \frac{24 a^{3}}{3}=1 \text { or } 8 a^{3}=1 \\ & a=1 / 2 \end{align*}$	A1	Correctly obtained. No errors seen. (SR Verification scores M1A1 only max 2/3)
	Total:	3	

Question	Answer	Marks	Guidance
5(b)(ii)	0	B1	
	Total:	1	
5(b)(iii)	$\begin{aligned} & 6 \int_{-0.5}^{0.5}\left(\frac{x^{2}}{4}-x^{4}\right) \mathrm{d} x \\ & \left(=6\left[\frac{x^{3}}{12}-\frac{x^{5}}{5}\right]_{-0.5}^{0.5}=0.05\right) \\ & \operatorname{Var}=0.05-0^{2} \end{aligned}$	M1	attempt int $x^{2} \mathrm{f}(x) \&$ correct limits
	$=0.05 \mathrm{oe}$	A1	cao; allow omission of -0^{2}
	Total:	2	

Question	Answer	Marks	Guidance
6 (i)	Assume cartons are random sample(s)	B1	or masses of cartons are independent of each other oe
	$\begin{aligned} & \mathrm{E}(T)=816.4 \\ & \operatorname{Var}(T)=1570.08 \end{aligned}$	B1	Both
	$z=\frac{900-816.44^{\prime \prime}}{\sqrt{" 15750.08^{\prime \prime}}} \quad(=2.110)$	M1	
	$1-\Phi($ "2.110")	M1	
	$=0.0174=1.74 \%(3 \mathrm{sfs})$	A1	$\%$ only (accept 1.7% if 0.0174 seen)
	Total:	5	
6(ii)	$\mathrm{P}(F-S>0)$ stated or implied	M1	$\mathrm{P}(S-F<0)$
	$\begin{array}{ll} 62.0-78.8 & (=-16.8) \\ \& 10.0^{2}+12.6^{2} & (=258.76) \end{array}$	B1	$\begin{array}{ll} 78.8-62.0 & (=16.8) \\ \& 12.6^{2}+10.0^{2} & (=258.76) \end{array}$
	$z=\frac{0-\left("-16.8^{\prime \prime}\right)}{\sqrt{\prime 255.76^{\prime \prime}}}(=1.044)$	M1	$z=\frac{0-116.8^{\prime \prime}}{\sqrt{" 258.76^{\prime}}}(=-1.044)$
	$1-\Phi(" 1.044$ ")	M1	$\Phi("-1.044 ")=1-\Phi\left({ }^{(1.044 ")}\right.$
	$\begin{aligned} & (=1-0.8517) \\ & =0.148(3 \mathrm{sfs}) \end{aligned}$	A1	
	Total:	5	

Question	Answer	Marks	Guidance
7(i)	Planes arrive at constant mean rate	B1	
	Planes arrive at random	B1	or Planes arrive independently Must be in context
	Total:	2	
7(ii)(a)	($\lambda=$) $5.2 \div 4$	M1	
	$\mathrm{e}^{-1.3}\left(\frac{1.3{ }^{2}}{2}+\frac{1.3^{3}}{3!}\right)$	M1	Allow any λ, allow one end error
	$=0.330$ (3 sfs)	A1	Accept 0.33
	Total:	3	
7(ii)(b)	$1-\mathrm{e}^{-3.467} \times\left(1+3.467+\frac{3.467^{2}}{2!}+\frac{3.467^{3}}{3!}\right)$	M1	Allow any λ except 5.2 or 1.3 , allow one end error
	$=0.456$ (3 sfs)	A1	
	Total:	2	
7(iii)	$\mathrm{N}(52,52)$ stated or implied	B1	
	$\frac{60.5-52}{\sqrt{52}}(=1.179)$	M1	ft their mean and var. Allow wrong or no cc or no $\sqrt{ }$
	Ф("1.179")	M1	
	$=0.881$ (3 sf)	A1	
	Total:	4	

