| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | :--- |
| 1 (i) | KE $=1 / 2 \times 0.4 \times 12^{2}=28.8 \mathrm{~J}$ | B1 |  |
|  |  | Total: | $\mathbf{1}$ |
|  | PE gain $=0.4 g h[=4 d \sin 30]$ |  | B1 |
|  |  | $h=$ height gained <br> $d=$ distance travelled up the plane |  |
|  | $4 h=28.8$ | M1 | Using KE loss $=$ PE gain |
|  | $h=7.2 h=d \sin 30 d=14.4 \mathrm{~m}$ |  | A1 |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 2 |  | M1 | Resolve forces horizontally and/or vertically |
|  | $T_{\mathrm{A}} \sin 20+T_{\mathrm{B}} \sin 40=16$ | A1 | Correct vertical equation |
|  | $T_{\mathrm{A}} \cos 20=T_{\mathrm{B}} \cos 40$ | A1 | Correct horizontal equation |
|  |  | M1 | Attempt to solve for $T_{\mathrm{A}}$ and/or $T_{\mathrm{B}}$ |
|  | $T_{\text {A }}=14.2 \mathrm{~N}$ | A1 | $T_{\mathrm{A}}=14.1528 \ldots$ |
|  | $T_{\mathrm{B}}=17.4 \mathrm{~N}$ | A1 | $T_{\mathrm{B}}=17.3610 \ldots$ |
|  | Total: | 6 |  |
|  | Alternative m | thod for | Question 2 |
|  |  | M1 | Attempt to use Lami's Theorem |
|  | $\frac{16}{\sin 120}=\frac{T_{A}}{\sin 130}$ | A1 |  |
|  | $\frac{16}{\sin 120}=\frac{T_{B}}{\sin 110}$ | A1 |  |
|  |  | M1 | Attempt to solve for $T_{\mathrm{A}}$ and/or $T_{\mathrm{B}}$ |
|  | $T_{\text {A }}=14.2 \mathrm{~N}$ | A1 |  |
|  | $T_{\text {B }}=17.4 \mathrm{~N}$ | A1 |  |
|  | Total: | 6 |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | :--- |
| 3 | $R=0.6 g \cos 21[=5.60]$ | B1 |  |
|  | $F=0.3 R=1.8 \cos 21[=1.68]$ | $\mathbf{M 1}$ | Using $F=\mu R$ |
|  | $P+F=6 \sin 21[=2.15]$ | M1 | Slipping down |
|  | $P=2.15-1.68=0.470$ | AG | A1 |
|  | $P-F=6 \sin 21$ | Least possible value |  |
|  | $P=2.15+1.68=3.83$ | M1 | Slipping up |
|  |  |  | A1 |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 4(i) | $36000=800 v$ | M1 | Using $P=F v$ |
|  | $v=45 \mathrm{~ms}^{-1}$ | A1 | Speed of the car |
|  | $A B=45 \times 120=5400 \mathrm{~m}$ | A1 |  |
|  | Total: | 3 |  |
| 4(ii) | $-800=900 a[a=-8 / 9]$ | M1 | Using Newton's 2nd law |
|  | $v^{2}=45^{2}-\frac{16}{9} \times 450$ | M1 | Using $v^{2}=u^{2}+2 a s$ |
|  | $v=35 \mathrm{~ms}^{-1}$ | A1 | Speed of the car at $C$ |
|  | Total: | 3 |  |
|  | Alternative method for Question 4(ii) |  |  |
|  | $0.5 \times 900 \times\left(45-v^{2}\right)$ | M1 | Attempt change in KE |
|  | $0.5 \times 900 \times\left(45-v^{2}\right)=800 \times 450$ | M1 | KE loss $=$ WD against Friction |
|  | $v=35 \mathrm{~ms}^{-1}$ | A1 | Speed of the car at $C$ |
|  | Total: | 3 |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | :--- |
| 4 (iii) | $C D=6637.5-5400-450=787.5$ | B1 |  |
|  | $0=35^{2}-2 d \times 787.5$ | M1 | Using $v^{2}=u^{2}+2 a s, a=-d$ |
|  | $d=7 / 9=0.778 \mathrm{~ms} \mathrm{~s}^{-2}$ | A1 | $d=$ deceleration |
|  | $P=900 \times(7 / 9)=700$ | A1 | Using $F=m a$ |
|  |  | Total: | $\mathbf{4}$ |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 5(i) | $\begin{aligned} & 0=a+b \times 35^{2} \\ & 40=a+b \times 15^{2} \end{aligned}$ | M1 | For matching velocities at $t=15$ and using $v=0$ at $t=35$ |
|  | $\begin{aligned} & {[1000 b=-40 \rightarrow b=-0.04]} \\ & {[a=0.04 \times 352=49]} \end{aligned}$ | M1 | Solve for $a$ and $b$ |
|  | $a=49$ and $b=-0.04 \quad$ AG | A1 |  |
|  | Total: | 3 |  |
| 5(ii) | $0 \leqslant t \leqslant 5$ correct | B1 | Increasing quadratic, from $(0,0)$ to $(5,20)$, concave up |
|  | $5 \leqslant t \leqslant 15$ correct | B1 | Line from ( 5,20 ) to ( 15,40 ) |
|  | $15 \leqslant t \leqslant 35$ correct | B1 | Decreasing quadratic, from $(15,40)$ to (35,0), concave down |
|  | 20 and 40 seen correct on $v$-axis | B1 |  |
|  | Total: | 4 |  |
| 5(iii) | $A_{1}=\int_{0}^{5} 0.8 t^{2} \mathrm{~d} t=\frac{100}{3}$ | B1 |  |
|  | $A_{2}=\frac{1}{2}(20+40) \times 10=300$ | M1 | Using trapezium rule or integration for $t=5$ to $t=15$ |
|  | $\begin{aligned} & A_{3}=\int_{15}^{35}\left(a+b t^{2}\right) \mathrm{d} t \\ & =49 t-\frac{0.04}{3} t^{3} \end{aligned}$ | M1 | Attempt to integrate the quadratic function from $t=15$ to $t=35$ |
|  | $A_{3}=453.3333=1360 / 3$ | A1 |  |
|  | Total Distance $=2360 / 3=787 \mathrm{~m}$ | A1 |  |
|  | Total: | 5 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6(i) |  | M1 | Apply Newton's law to either of the particles |
|  | $12-T=1.2 a$ and $T-8=0.8 a$ | A1 | Both equations correct |
|  |  | M1 | Solve for $a$ and $T$ |
|  | $a=2 \mathrm{~ms}^{-2}$ and $T=9.6 \mathrm{~N}$ | A1 |  |
|  | Total: | 4 |  |
| 6(ii) | $\begin{aligned} & {\left[0.64=1 / 2 \times 2 \times t_{1}^{2}\right]} \\ & {\left[\nu=2 t_{1}\right]} \end{aligned}$ | M1 | Attempt to find time $t_{1}$ taken for 1.2 kg particle to reach ground and/or its speed $v$ at the ground |
|  | $t_{1}=0.8$ | A1 |  |
|  | $v=2 \times 0.8=1.6$ | A1 |  |
|  | $\begin{aligned} & {\left[0=1.6-10 t_{2}\right]} \\ & {\left[1.6^{2}=2 \times 10 \times s_{2}\right]} \end{aligned}$ | M1 | For attempting to find the time $t_{2}$ and/or distance travelled $s_{2}$ as 0.8 kg particle comes to rest |
|  | $t_{2}=0.16$ | A1 |  |
|  | $s_{2}=0.128$ | A1 |  |
|  | $\begin{aligned} & t_{3}=1-0.8-0.16=0.04 \\ & s_{3}=1 / 2 \times 10 \times 0.04^{2} \end{aligned}$ | B1 | Finding the distance $s_{3}$ travelled downwards in $t_{3}$ seconds |
|  | Total distance travelled $=$ $0.64+0.128+0.008=0.776 \mathrm{~m}$ | B1 |  |
|  | Total: | 8 |  |

