Question	Answer	Marks
1	Remove logarithm and obtain $1 + 2^x = e^2$	B1
	Use correct method to solve an equation of the form $2^x = a$, where $a > 0$	M1
	Obtain answer $x = 2.676$	A1
	Total:	3

Question	Answer	Marks
2	EITHER:	
	State or imply non-modular inequality $(x - 4)^2 < (2(3x + 1))^2$, or corresponding quadratic equation, or pair of linear equations $x - 4 = \pm 2(3x + 1)$	(B1
	Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for x	M1
	Obtain critical values $x = -\frac{6}{5}$ and $x = \frac{2}{7}$	A1
	State final answer $x < -\frac{6}{5}$, $x > \frac{2}{7}$	A1)
	OR:	
	Obtain critical value $x = -\frac{6}{5}$ from a graphical method, or by inspection, or by solving a linear equation or inequality	(B1
	Obtain critical value $x = \frac{2}{7}$ similarly	B2
	State final answer $x < -\frac{6}{5}$, $x > \frac{2}{7}$	B 1)
	Total:	4

Question	Answer	Marks
3(i)	Sketch a relevant graph, e.g. $y = e^{-\frac{1}{2}x}$	B1
	Sketch a second relevant graph, e.g. $y = 4 - x^2$, and justify the given statement	B1
	Total:	2
3(ii)	Calculate the value of a relevant expression or values of a pair of expressions at $x = -1$ and $x = -1.5$	M1
	complete the argument correctly with correct calculated values	A1
	Total:	2

Question	Answer	Marks
3(iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer – 1.41	A1
	Show sufficient iterations to 4 d.p. to justify -1.41 to 2 d.p., or show there is a sign change in the interval (-1.415 , -1.405)	A1
	Total:	3

Question	Answer	Marks
4(i)	State $R = 17$	B1
	Use trig formula to find α	M1
	Obtain $\alpha = 61.93^{\circ}$ with no errors seen	A1
	Total:	3
4(ii)	Evaluate $\cos^{-1}(4/17)$ to at least 1d.p. (76.39° to 2 d.p.)	B1√^
	Use a correct method to find a value of x in the interval $0^{\circ} < x < 180^{\circ}$	M1
	Obtain answer, e.g. $x = 7.2^{\circ}$	A1
	Obtain second answer, e.g. $x = 110.8^{\circ}$ and no others	A1
	[Ignore answers outside the given interval.]	
	[Treat answers in radians as a misread.]	
	Total:	4

Question	Answer	Marks
5	Use product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero, use Pythagoras and obtain a quadratic equation in $\tan x$	M1
	Obtain $\tan^2 x - a \tan x + 1 = 0$, or equivalent	A1
	Use the condition for a quadratic to have only one root	M1
	Obtain answer $a = 2$	A1
	Obtain answer $x = \frac{1}{4}\pi$	A1
	Total:	7

Question	Answer	Marks
6(i)	Verify that the point with position vector $\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ lies in the plane	B1
	EITHER:	
	Find a second point on l and substitute its coordinates in the equation of p	(M1
	Verify that the second point, e.g. $(3, 1, -2)$, lies in the plane	A1)
	OR:	
	Expand scalar product of a normal to p and the direction vector of l	(M1
	Verify scalar product is zero	A1)
	Total:	3

Question	Answer	Marks
6(ii)	EITHER:	
	Use scalar product to obtain a relevant equation in a, b and c, e.g. $2a - b + c = 0$	(B1
	Obtain a second relevant equation, e.g. $3a + b - 5c = 0$, and solve for one ratio e.g. $a : b$	M1
	Obtain $a:b:c=4:13:5$, or equivalent	A1
	Substitute $(3, -1, 2)$ and the values of <i>a</i> , <i>b</i> and <i>c</i> in the general equation and find <i>d</i>	M1
	Obtain answer $4x + 13y + 5z = 9$, or equivalent	A1)
	OR1:	
	Attempt to calculate vector product of relevant vectors, e.g. $(2i - j + k) \times (3i + j - 5k)$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $4\mathbf{i} + 13\mathbf{j} + 5\mathbf{k}$	A1
	Substitute $(3, -1, 2)$ in $4x + 13y + 5z = d$, or equivalent, and find d	M1
	Obtain answer $4x + 13y + 5z = 9$, or equivalent	A1)
	OR2:	
	Using the relevant point and relevant vectors form a 2-parameter equation for the plane	(M1
	State a correct equation, e.g. $\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \mu(3\mathbf{i} + \mathbf{j} - 5\mathbf{k})$	A1
	State three correct equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ	A1
	Eliminate λ and μ	M1
	Obtain answer $4x + 13y + 5z = 9$, or equivalent	A1)
	OR3:	
	Using the relevant point and relevant vectors form a determinant equation for the plane	(M1
	State a correct equation, e.g. $\begin{vmatrix} x-3 & y+1 & z-2 \\ 2 & -1 & 1 \\ 3 & 1 & -5 \end{vmatrix} = 0$	A1
	Attempt to expand the determinant	M1
	Obtain or imply two correct cofactors	A1

Question	Answer	Marks
	Obtain answer $4x + 13y + 5z = 9$, or equivalent	A1)
	Total:	5

Question	Answer	Marks
7(i)	State or imply $\frac{\mathrm{d}V}{\mathrm{d}t} = 2\frac{\mathrm{d}h}{\mathrm{d}t}$	B1
	State or imply $\frac{\mathrm{d}V}{\mathrm{d}t} = 1 - 0.2\sqrt{h}$	B1
	Obtain the given answer correctly	B1
	Total:	3
7(ii)	State or imply $du = -\frac{1}{2\sqrt{h}} dh$, or equivalent	B1
	Substitute for <i>h</i> and d <i>h</i> throughout	M1
	Obtain $T = \int_{3}^{5} \frac{20(5-u)}{u} du$, or equivalent	A1
	Integrate and obtain terms $100 \ln u - 20u$, or equivalent	A1
	Substitute limits $u = 3$ and $u = 5$ correctly	M1
	Obtain answer 11.1, with no errors seen	A1
	Total:	6

Question	Answer	Marks
8(i)	Substitute $z = -1 + i$ and attempt expansions of the z^2 and z^4 terms	M1
	Use $i^2 = -1$ at least once	M1
	Complete the verification correctly	A1
	Total:	3
8(ii)	State second root $z = -1 - i$	B 1
	Carry out a complete method for finding a quadratic factor with zeros $-1+i$ and $-1-i$	M1
	Obtain $z^2 + 2z + 2$, or equivalent	A1
	Attempt division of $p(z)$ by $z^2 + 2z + 2$ and reach a partial quotient $z^2 + kz$	M1
	Obtain quadratic factor $z^2 - 2z + 5$	A1
	Solve 3-term quadratic and use $i^2 = -1$	M1
	Obtain roots 1 + 2i and 1 – 2i	A1
	Total:	7

Question	Answer	Marks
9(i)	State or imply the form $\frac{A}{2+x} + \frac{Bx+C}{4+x^2}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = -2$, $B = 1$, $C = 4$	A1
	Obtain a second value	A1
	Obtain the third value	A1
	Total:	5

Question	Answer	Marks
9(ii)	Use correct method to obtain the first two terms of the expansion of $(1 + \frac{1}{2}x)^{-1}$, $(2 + x)^{-1}$, $(1 + \frac{1}{4}x^2)^{-1}$ or $(4 + x^2)^{-1}$	M1
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	$A1\sqrt{+} + A1\sqrt{+}$
	Multiply out up to the term in x^2 by $Bx + C$, where $BC \neq 0$	M1
	Obtain final answer $\frac{3}{4}x - \frac{1}{2}x^2$	A1
	[Symbolic binomial coefficients, e.g. $_{-1}C_2$, are not sufficient for the first M1. The f.t. is on <i>A</i> , <i>B</i> , <i>C</i> .]	
	[In the case of an attempt to expand $x(6-x)(2+x)^{-1}(4+x^2)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]	
	Total:	5

Question	Answer	Marks
10(i)	State or imply derivative is $2\frac{\ln x}{x}$	B1
	State or imply gradient of the normal at $x = e$ is $-\frac{1}{2}e$, or equivalent	B1
	Carry out a complete method for finding the <i>x</i> -coordinate of <i>Q</i>	M1
	Obtain answer $x = e + \frac{2}{e}$, or exact equivalent	A1
	Total:	4
10(ii)	Justify the given statement by integration or by differentiation	B1
	Total:	1
10(iii)	Integrate by parts and reach $ax(\ln x)^2 + b\int x \frac{\ln x}{x} dx$	M1*
	Complete the integration and obtain $x(\ln x)^2 - 2x \ln x + 2x$, or equivalent	A1
	Use limits $x = 1$ and $x = e$ correctly, having integrated twice	DM1
	Obtain exact value e – 2	A1
	Use <i>x</i> - coordinate of <i>Q</i> found in part (i) and obtain final answer $e - 2 + \frac{1}{e}$	B1√ [∧]
	Total:	5