Question	Answer	Marks
1	Remove logarithm and obtain $1+2^{x}=\mathrm{e}^{2}$	B1
	Use correct method to solve an equation of the form $2^{x}=a$, where $a>0$	M1
	Obtain answer $x=2.676$	A1
		Total:

Question	Answer	Marks
2	EITHER:	(B1
	State or imply non-modular inequality $(x-4)^{2}<(2(3 x+1))^{2}$, or corresponding quadratic equation, or pair of linear equations $x-4= \pm 2(3 x+1)$	M1
	Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for x	A1
	Obtain critical values $x=-\frac{6}{5}$ and $x=\frac{2}{7}$	A1)
	State final answer $x<-\frac{6}{5}, x>\frac{2}{7}$	(B1
	OR:	B2
	Obtain critical value $x=-\frac{6}{5}$ from a graphical method, or by inspection, or by solving a linear equation or inequality	B1)
	Obtain critical value $x=\frac{2}{7}$ similarly	Total:

Question	Answer	Marks			
3 (i)	Sketch a relevant graph, e.g. $y=\mathrm{e}^{-\frac{1}{2} x}$	B1			
	Sketch a second relevant graph, e.g. $y=4-x^{2}$, and justify the given statement	B1			
	Total:				$\mathbf{2}$
	Calculate the value of a relevant expression or values of a pair of expressions at $x=-1$ and $x=-1.5$	M1			
	complete the argument correctly with correct calculated values	A1			
		Total:			

Question	Answer	Marks
3 (iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer -1.41	A1
	Show sufficient iterations to 4 d.p. to justify -1.41 to 2 d.p., or show there is a sign change in the interval $(-1.415,-1.405)$	A1
		Total:

Question	Answer	Marks
4(i)	State $R=17$	B1
	Use trig formula to find α	M1
	Obtain $\alpha=61.93^{\circ}$ with no errors seen	A1
	Total:	3
4(ii)	Evaluate $\cos ^{-1}(4 / 17)$ to at least 1d.p. (76.39° to 2 d.p.)	B1 ${ }^{\wedge}$
	Use a correct method to find a value of x in the interval $0^{\circ}<x<180^{\circ}$	M1
	Obtain answer, e.g. $x=7.2^{\circ}$	A1
	Obtain second answer, e.g. $x=110.8^{\circ}$ and no others	A1
	[Ignore answers outside the given interval.]	
	[Treat answers in radians as a misread.]	
	Total:	4

Question	Answer	Marks
5	Use product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero, use Pythagoras and obtain a quadratic equation in $\tan x$	M1
	Obtain $\tan ^{2} x-a \tan x+1=0$, or equivalent	A1
	Use the condition for a quadratic to have only one root	M1
	Obtain answer $a=2$	A1
	Obtain answer $x=\frac{1}{4} \pi$	A1
		$\mathbf{7}$

Question	Answer	Marks
6 (i)	Verify that the point with position vector $\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ lies in the plane	B1
	EITHER:	
	Find a second point on l and substitute its coordinates in the equation of p	(M1
	Verify that the second point, e.g. $(3,1,-2)$, lies in the plane	A1)
	OR:	
	Expand scalar product of a normal to p and the direction vector of l	(M1
	Verify scalar product is zero	A1)
	Total:	3

Question	Answer	Marks
6(ii)	EITHER:	
	Use scalar product to obtain a relevant equation in a, b and c, e.g. $2 a-b+c=0$	(B1
	Obtain a second relevant equation, e.g. $3 a+b-5 c=0$, and solve for one ratio e.g. $a: b$	M1
	Obtain $a: b: c=4: 13: 5$, or equivalent	A1
	Substitute ($3,-1,2)$ and the values of a, b and c in the general equation and find d	M1
	Obtain answer $4 x+13 y+5 z=9$, or equivalent	A1)
	OR1:	
	Attempt to calculate vector product of relevant vectors, e.g. $(2 \mathbf{i}-\mathbf{j}+\mathbf{k}) \times(3 \mathbf{i}+\mathbf{j}-5 \mathbf{k})$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $4 \mathbf{i}+13 \mathbf{j}+5 \mathbf{k}$	A1
	Substitute $(3,-1,2)$ in $4 x+13 y+5 z=d$, or equivalent, and find d	M1
	Obtain answer $4 x+13 y+5 z=9$, or equivalent	A1)
	OR2:	
	Using the relevant point and relevant vectors form a 2-parameter equation for the plane	(M1
	State a correct equation, e.g. $\mathbf{r}=3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+\mathbf{k})+\mu(3 \mathbf{i}+\mathbf{j}-5 \mathbf{k})$	A1
	State three correct equations in x, y, z, λ and μ	A1
	Eliminate λ and μ	M1
	Obtain answer $4 x+13 y+5 z=9$, or equivalent	A1)
	OR3:	
	Using the relevant point and relevant vectors form a determinant equation for the plane	(M1
	State a correct equation, e.g. $\left\|\begin{array}{ccc}x-3 & y+1 & z-2 \\ 2 & -1 & 1 \\ 3 & 1 & -5\end{array}\right\|=0$	A1
	Attempt to expand the determinant	M1
	Obtain or imply two correct cofactors	A1

Question	Answer	Marks
	Obtain answer $4 x+13 y+5 z=9$, or equivalent	A1)
		Total:

Question	Answer		Marks
7(i)	State or imply $\frac{\mathrm{d} V}{\mathrm{~d} t}=2 \frac{\mathrm{~d} h}{\mathrm{~d} t}$		B1
	State or imply $\frac{\mathrm{d} V}{\mathrm{~d} t}=1-0.2 \sqrt{h}$		B1
	Obtain the given answer correctly		B1
		Total:	3
7(ii)	State or imply $\mathrm{d} u=-\frac{1}{2 \sqrt{h}} \mathrm{~d} h$, or equivalent		B1
	Substitute for h and $\mathrm{d} h$ throughout		M1
	Obtain $T=\int_{3}^{5} \frac{20(5-u)}{u} \mathrm{~d} u$, or equivalent		A1
	Integrate and obtain terms $100 \ln u-20 u$, or equivalent		A1
	Substitute limits $u=3$ and $u=5$ correctly		M1
	Obtain answer 11.1, with no errors seen		A1
		Total:	6

Question	Answer	Marks
8(i)	Substitute $z=-1+\mathrm{i}$ and attempt expansions of the z^{2} and z^{4} terms	M1
	Use $\mathrm{i}^{2}=-1$ at least once	M1
	Complete the verification correctly	A1
	Total:	3
8(ii)	State second root $z=-1-\mathrm{i}$	B1
	Carry out a complete method for finding a quadratic factor with zeros $-1+\mathrm{i}$ and $-1-\mathrm{i}$	M1
	Obtain $z^{2}+2 z+2$, or equivalent	A1
	Attempt division of $\mathrm{p}(z)$ by $z^{2}+2 z+2$ and reach a partial quotient $z^{2}+k z$	M1
	Obtain quadratic factor $z^{2}-2 z+5$	A1
	Solve 3-term quadratic and use $\mathrm{i}^{2}=-1$	M1
	Obtain roots $1+2 \mathrm{i}$ and $1-2 \mathrm{i}$	A1
	Total:	7

Question	Answer	Marks
$9(\mathrm{i})$	State or imply the form $\frac{A}{2+x}+\frac{B x+C}{4+x^{2}}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A=-2, B=1, \mathrm{C}=4$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		$\mathbf{5}$

Question	Answer	Marks
9(ii)	Use correct method to obtain the first two terms of the expansion of $\left(1+\frac{1}{2} x\right)^{-1}$, $(2+x)^{-1},\left(1+\frac{1}{4} x^{2}\right)^{-1}$ or $\left(4+x^{2}\right)^{-1}$	M1
	Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction	$\mathbf{A 1} \checkmark^{\wedge}+\mathbf{A 1} \downarrow^{\wedge}$
	Multiply out up to the term in x^{2} by $B x+C$, where $B C \neq 0$	M1
	Obtain final answer $\frac{3}{4} x-\frac{1}{2} x^{2}$	A1
	[Symbolic binomial coefficients, e.g. ${ }_{-1} \mathrm{C}_{2}$, are not sufficient for the first M1. The f.t. is on A, B, C.]	
	[In the case of an attempt to expand $x(6-x)(2+x)^{-1}\left(4+x^{2}\right)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]	
	Total:	5

Question	Answer	Marks
10(i)	State or imply derivative is $2 \frac{\ln x}{x}$	B1
	State or imply gradient of the normal at $x=\mathrm{e}$ is $-\frac{1}{2} \mathrm{e}$, or equivalent	B1
	Carry out a complete method for finding the x-coordinate of Q	M1
	Obtain answer $x=\mathrm{e}+\frac{2}{\mathrm{e}}$, or exact equivalent	A1
	Total:	4
10(ii)	Justify the given statement by integration or by differentiation	B1
	Total:	1
10(iii)	Integrate by parts and reach $a x(\ln x)^{2}+b \int x \cdot \frac{\ln x}{x} \mathrm{~d} x$	M1*
	Complete the integration and obtain $x(\ln x)^{2}-2 x \ln x+2 x$, or equivalent	A1
	Use limits $x=1$ and $x=\mathrm{e}$ correctly, having integrated twice	DM1
	Obtain exact value e-2	A1
	Use x - coordinate of Q found in part (i) and obtain final answer $\mathrm{e}-2+\frac{1}{\mathrm{e}}$	B1 ${ }^{\text {a }}$
	Total:	5

