Question	Answer	Marks	Guidance
1	Use $2 \ln (2 x)=\ln (2 x)^{2}$	$*$ M1	
	Use addition or subtraction property of logarithms	$* \mathbf{M 1}$	
	Obtain $4 x^{2}=(x+3)(3 x+5)$ or equivalent without logarithms	A1	
	Solve 3-term quadratic equation	DM1	dep $* \mathrm{M} * \mathrm{M}$
	Conclude with $x=15$ only	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
2 (i)	Use identity $\cot \theta=\frac{1}{\tan \theta}$	B1	
	Attempt use of identity for $\tan 2 \theta$	M1	
	Confirm given $\tan ^{2} \theta=\frac{3}{4}$	A1	
		Total:	$\mathbf{3}$

Question	Answer	Marks	Guidance
3 (i)	State or imply non-modulus inequality $(2 x-5)^{2}<(x+3)^{2}$ or corresponding equation or pair of linear equations	B1	
	Attempt solution of 3-term quadratic inequality or equation or of 2 linear equations	M1	
	Obtain critical values $\frac{2}{3}$ and 8	A1	
	State answer $\frac{2}{3}<x<8$	A1	
		Total:	$\mathbf{4}$

Question	Answer	Marks	Guidance
3 (ii)	Attempt to find y from $\ln y=$ upper limit of answer to part (i)	M1	
	Obtain 2980	A1	
		Total:	$\mathbf{2}$

Question	Answer	Marks	Guidance
4	Use product rule for derivative of $x^{2} \sin y$	M1	
	Obtain $2 x \sin y+x^{2} \cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}$	A1	
	Obtain $-3 \sin 3 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $\cos 3 y$	B1	
	Obtain $2 x \sin y+x^{2} \cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 \sin 3 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	A1	
	Substitute $x=2, y=\frac{1}{2} \pi$ to find value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	dep $\frac{\mathrm{d} y}{\mathrm{~d} x}$ occurring at least once
	Obtain $-\frac{4}{3}$	A1	from correct work only
		$\mathbf{6}$	

Question	Answer	Marks	Guidance
5 (i)	Integrate to obtain form $k_{1} x+k_{2} x^{2}+k_{3} \mathrm{e}^{3 x}$ for non-zero constants	M1	
	Obtain $x+x^{2}+\mathrm{e}^{3 x}$	A1	
	Apply both limits to obtain $a+a^{2}+\mathrm{e}^{3 a}-1=250$ or equivalent	A1	
	Apply correct process to reach form without e involved	M1	
	Confirm given $a=\frac{1}{3} \ln \left(251-a-a^{2}\right)$	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
5 (ii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.835	A1	
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval (1.8345, 1.8355$)$	A1	
		Total:	$\mathbf{3}$

Question	Answer	Marks	Guidance
6(i)	Substitute $x=-2$ and equate to zero	M1	
	Substitute $x=2$ and equate to 28	M1	
	Obtain $-9 a+4 b+34=0$ and $7 a+4 b-62=0$ or equivalents	A1	
	Solve a relevant pair of simultaneous equations for a or b	M1	
	Obtain $a=6, b=5$	A1	
		Total:	$\mathbf{5}$

Question	Answer	Marks	Guidance
7(i)	Use $\cos (A+B)$ identity	M1	
	Obtain $2 \cos 2 x\left(\cos 2 x \cdot \frac{1}{2} \sqrt{3}-\sin 2 x \cdot \frac{1}{2}\right)$	A1	
	Attempt identity expressing $\cos ^{2} 2 x$ in terms of $\cos 4 x$	M1	
	Attempt identity expressing $\cos 2 x \sin 2 x$ in terms of $\sin 4 x$	M1	
	Obtain $\frac{1}{2} \sqrt{3}(1+\cos 4 x)-\frac{1}{2} \sin 4 x$	A1	
	Total:	5	
7(ii)	Attempt to find at least one intercept with x-axis	M1	
	Obtain $x=\frac{1}{6} \pi$ at least	A1	
	Integrate to obtain $k_{4} x+k_{5} \sin 4 x+k_{6} \cos 4 x$	M1	
	Obtain $\frac{1}{2} \sqrt{3} x+\frac{1}{8} \sqrt{3} \sin 4 x+\frac{1}{8} \cos 4 x$	A1 $\sqrt{\text { a }}$	following their answer to (i) of correct form
	Apply limits 0 and $\frac{1}{6} \pi$ to obtain $\left(\frac{1}{12} \sqrt{3}\right) \pi$ or exact equivalent	A1	following completely correct work
	Total:	5	

