Question	Answer	Marks	Guidance
1	$(3k)^2 - 4 \times 2 \times k$	M1	Attempt $b^2 - 4ac$
	$9k^2 - 8k > 0$ soi Allow $9k^2 - 8k \ge 0$	A1	Must involve correct inequality. Can be implied by correct answers
	0, 8/9 soi	A1	
	<i>k</i> < 0, <i>k</i> > 8/9 (or 0.889)	A1	Allow $(-\infty, 0)$, $(8/9, \infty)$
	Total:	4	

Question	Answer	Marks	Guidance
2	$5C2\left(\frac{1}{ax}\right)^3 \left(2ax^2\right)^2$ soi	B1	Seen or implied. Can be part of an expansion.
	$10 \times \frac{1}{a^3} \times 4a^2 = 5 \text{ soi}$	M1A1	M1 for identifying relevant term and equating to 5, all correct. Ignore extra x
	a = 8 cao	A1	
	Total:	4	

Question	Answer	Marks	Guidance		
3(i)	$V = \frac{1}{12}h^3 \text{ oe}$	B1			
	Total:	1			
3(ii)	$\frac{dV}{dh} = \frac{1}{4}h^2$ or $\frac{dh}{dV} = 4(12v)^{-2/3}$	M1A1	Attempt differentiation. Allow incorrect notation for M. For A mark accept <i>their</i> letter for volume - but otherwise correct notation. Allow V'		
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{4}{h^2} \times 20 \text{ soi}$	DM1	Use chain rule correctly with $\frac{d(V)}{dt} = 20$. Any equivalent formulation. Accept non-explicit chain rule (or nothing at all)		
	$\left(\frac{\mathrm{d}h}{\mathrm{d}t}\right) = \frac{4}{10^2} \times 20 = 0.8 \text{ or equivalent fraction}$	A1			
	Total:	4			

970 March 2017 12

Question	Answer	Marks	Guidance
4(i)	$ABC = \pi / 2 - \pi / 7 = 5\pi / 14.$ $CBD = \pi - 5\pi / 14 = 9\pi / 14$	B1	AG Or other valid exact method.
	Total:	1	
4(ii)	$\sin\frac{\pi}{7} = \frac{\frac{1}{2}BC}{8} \text{ or } \frac{BC}{\sin\frac{2\pi}{7}} = \frac{8}{\sin\frac{5\pi}{14}} \text{ or}$ $BC^{2} = 8^{2} + 8^{2} - 2(8)(8)\cos\frac{2\pi}{7}$	M1	
	BC = 6.94(2)	A1	
	arc $CD = their 6.94 \times 9\pi / 14$	M 1	Expect 14.02(0)
	arc $CB = 8 \times 2\pi / 7$	M1	Expect 7.18(1)
	perimeter = 6.94 + 14.02 + 7.18 = 28.1	A1	
	Total:	5	

970	Margh	7 2017	12

Question	Answer	Marks	Guidance
5(i)	$\tan x = \cos x \to \sin x = \cos^2 x$	M1	Use $\tan = \frac{\sin}{\cos}$ and multiply by \cos
	$\sin x = 1 - \sin^2 x$	M1	Use $\cos^2 x = 1 - \sin^2 x$
	$\sin x = 0.6180$. Allow $(-1 + \sqrt{5})/2$	M1	Attempt soln of quadratic in $\sin x$. Ignore solution -1.618 . Allow $x = 0.618$
	x -coord of $A = \sin^{-1} 0.618 = 0.666$ cao	A1	Must be radians. Accept 0.212π
	Total:	4	
5(ii)	EITHER <i>x</i> -coord of <i>B</i> is π – <i>their</i> 0.666	(M1	Expect 2.475(3). Must be radians throughout
	<i>y</i> -coord of <i>B</i> is tan(<i>their</i> 2.475) or cos(<i>their</i> 2.475)	M1	
	x = 2.48, y = -0.786 or -0.787 cao	A1)	Accept $x = 0.788\pi$
	OR <i>y</i> -coord of <i>B</i> is – (cos or tan (<i>their</i> 0.666))	(M1	
	<i>x</i> -coord of <i>B</i> is $\cos^{-1}(their y)$ or $\pi + \tan^{-1}(their y)$	M1	
	x = 2.48, y = -0.786 or -0.787	A1)	Accept $x = 0.788\pi$
	Total:	3	

970	Margh	7 2017	12

Question	Answer	Marks	Guidance
6(i)	$\mathbf{B}\mathbf{A} = \mathbf{O}\mathbf{A} - \mathbf{O}\mathbf{B} = -5\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	B1	Allow vector reversed. Ignore label BA or AB
	OA.BA = -10 - 3 + 10 = -3	M1	soi by ±3
	$ \mathbf{OA} \times \mathbf{BA} = \sqrt{2^2 + 3^2 + 5^2} \times \sqrt{5^2 + 1^2 + 2^2}$	M1	Prod. of mods for at least 1 correct vector or reverse.
	$\cos OAB = \frac{+/-3}{\sqrt{38} \times \sqrt{30}}$	M1	
	$OAB = 95.1^{\circ} (\text{or } 1.66^{\circ})$	A1	
	Total:	5	
6(ii)	$\Delta OAB = \frac{1}{2}\sqrt{38} \times \sqrt{30} \sin 95.1 \text{ . Allow } \frac{1}{2}\sqrt{38} \times \sqrt{74} \sin 39.4$	M1	Allow their moduli product from (i)
	= 16.8	A1	cao but \underline{NOT} from sin 84.9 (1.482 ^c)
	Total:	2	

Question	Answer	Marks	Guidance
7(i)	f'(x) = $\left[\frac{3}{2}(4x+1)^{1/2}\right]$ [4]	B1B1	Expect $6(4x+1)^{1/2}$ but can be unsimplified.
	f "(x) = $6 \times 1/2 \times (4x+1)^{-1/2} \times 4$	B1√ [^]	Expect $12(4x+1)^{-1/2}$ but can be unsimplified. Ft from <i>their</i> f'(x).
	Total:	3	
7(ii)	f(2), f'(2), kf "(2) = 27, 18, 4k OR 12	B1B1√B1√	Ft dependent on attempt at differentiation
	$27/18 = 18/4k \text{ oe OR } kf''(2) = 12 \implies k = 3$	M1A1	
	Total:	5	

9709/12

970	Maffel	72Q17	12

Question	Answer	Marks	Guidance
8(i)	$gf(x) = 3(2x^{2} + 3) + 2 = 6x^{2} + 11$	B1	AG
	$fg(x) = 2(3x+2)^2 + 3$ Allow $18x^2 + 24x + 11$	B1	ISW if simplified incorrectly. Not retrospectively from (ii)
	Total:	2	
8(ii)	$y = 2(3x+2)^2 + 3 \implies 3x+2 = (\pm)\sqrt{(y-3)/2}$ oe	M1	Subtract 3; divide by 2; square root. Or x/y interchanged. Allow $\frac{\sqrt{y-3}}{2}$ for 1st M
	$\Rightarrow x = (\pm)\frac{1}{3}\sqrt{(y-3)/2} - \frac{2}{3} \text{ oe}$	M1	Subtract 2; divide by 3; Indep. of 1st M1. Or x/y interchanged.
	$\Rightarrow (\mathrm{fg})^{-1}(x) = \frac{1}{3}\sqrt{(x-3)/2} - \frac{2}{3}$ oe	A1	Must be a function of x. Allow alt. method $g^{-1}f^{-1}(x)$ OR $18\left(x+\frac{2}{3}\right)^2+3 \Rightarrow (fg)^{-1}(x)=\sqrt{\frac{x-3}{18}}-\frac{2}{3}$
	Solve <i>their</i> (fg) ⁻¹ (x) ≥ 0 or attempt range of fg	M1	Allow <u>range</u> ≥ 3 for M only. Can be implied by correct answer or $x > 11$
	Domain is $x \ge 11$	A1	
	Total:	5	

970 March 2017 12

Question	Answer	Marks	Guidance
8(iii)	$6(2x)^{2} + 11 = 2(3x + 2)^{2} + 3$	M1	Replace x with 2x in gf and equate to <i>their</i> $fg(x)$ from (i). Allow $12x^2 + 11 =$
	$6x^2 - 24x = 0 \text{oe}$	A1	Collect terms to obtain correct quadratic expression.
	x = 0 , 4	A1	Both required
	Total:	3	

Question	Answer	Marks	Guidance
9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2 \text{ . At } x = 2, \ m = 2$	B1B1	Numerical <i>m</i>
	Equation of tangent is $y - 2 = 2(x - 2)$	B1	Expect $y = 2x - 2$
	Total:	3	
9(ii)	Equation of normal $y - 2 = -\frac{1}{2}(x - 2)$	M1	Through (2, 2) with gradient = $-1/m$. Expect $y = -\frac{1}{2}x + 3$
	$x^{2} - 2x + 2 = -\frac{1}{2}x + 3 \rightarrow 2x^{2} - 3x - 2 = 0$	M1	Equate and simplify to 3-term quadratic
	$x = -\frac{1}{2}, y = \frac{3}{4}$	A1A1	Ignore answer of (2, 2)
	Total:	4	

970	Margh	72Q17	12
			_

Question	Answer	Marks	Guidance
9(iii)	At $x = -\frac{1}{2}$, grad = $2(-\frac{1}{2}) - 2 = -3$	B1√ [^]	Ft <i>their</i> $-\frac{1}{2}$.
	Equation of tangent is $y - 3\frac{1}{4} = -3(x + \frac{1}{2})$	*M1	Through <i>their B</i> with grad <i>their</i> -3 (not m ₁ or m ₂). Expect $y = -3x + 7/4$
	2x - 2 = -3x + 7/4	DM1	Equate <i>their</i> tangents or attempt to solve simultaneous equations
	$x = 3/4, y = -\frac{1}{2}$	A1	Both required.
	Total:	4	

Question	Answer	Marks	Guidance
10(i)	$2x - 2 / x^3 = 0$	M1	$\operatorname{Set} = 0.$
	$x^4 = 1 \Longrightarrow x = 1$ at A cao	A1	Allow 'spotted' $x = 1$
	Total:	2	
10(ii)	$f(x) = x^2 + 1/x^2(+c)$ cao	B1	
	$\frac{189}{16} = 16 + 1/16 + c$	M1	Sub (4, $\frac{189}{16}$). <i>c</i> must be present. Dep. on integration
	c = -17/4	A1	
	Total:	3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

970 March 2017 12

Question	Answer	Marks	Guidance
10(iii)	$x^{2} + 1/x^{2} - 17/4 = 0 \implies 4x^{4} - 17x^{2} + 4 (=0)$	M1	Multiply by $4x^2$ (or similar) to transform into 3-term quartic.
	$(4x^2-1)(x^2-4) (=0)$	M1	Treat as quadratic in x^2 and attempt solution or factorisation.
	$x = \frac{1}{2}, 2$	A1A1	Not necessary to distinguish. Ignore negative values. No working scores 0/4
	Total:	4	
10(iv)	$\int (x^2 + x^{-2} - 17/4) dx = \frac{x^3}{3} - \frac{1}{x} - \frac{17x}{4}$	B2,1,0√ [≜]	Mark final integral
	(8/3-1/2-17/2)-(1/24-2-17/8)	M1	Apply <i>their</i> limits from (iii) (Seen). Dep. on integration of at least 1 term of y
	Area = 9/4	A1	Mark final answer. $\int y^2$ scores 0/4
	Total:	4	