Question	Answer	Marks	Guidance
1	$(3 k)^{2}-4 \times 2 \times k$	M1	Attempt $b^{2}-4 a c$
	$9 k^{2}-8 k>0 \quad$ soi \quad Allow $9 k^{2}-8 k \geqslant 0$	A1	Must involve correct inequality. Can be implied by correct answers
	$0,8 / 9$ soi	A1	
	$k<0, k>8 / 9($ or 0.889$)$	A1	Allow $(-\infty, 0),(8 / 9, \infty)$
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2	$5 \mathrm{C} 2\left(\frac{1}{a x}\right)^{3}\left(2 a x^{2}\right)^{2}$ soi	B1	Seen or implied. Can be part of an expansion.
	$10 \times \frac{1}{a^{3}} \times 4 a^{2}=5$ soi	M1A1	M1 for identifying relevant term and equating to 5, all correct. Ignore extra x
	$a=8$ cao	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3(i)	$V=\frac{1}{12} h^{3} \mathrm{oe}$	B1	
	Total:	1	
3(ii)	$\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{1}{4} h^{2}$ or $\frac{\mathrm{d} h}{\mathrm{~d} V}=4(12 v)^{-2 / 3}$	M1A1	Attempt differentiation. Allow incorrect notation for M. For A mark accept their letter for volume - but otherwise correct notation. Allow V^{\prime}
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{4}{h^{2}} \times 20$ soi	DM1	Use chain rule correctly with $\frac{\mathrm{d}(V)}{\mathrm{d} t}=20$. Any equivalent formulation. Accept non-explicit chain rule (or nothing at all)
	$\left(\frac{\mathrm{d} h}{\mathrm{~d} t}\right)=\frac{4}{10^{2}} \times 20=0.8$ or equivalent fraction	A1	
	Total:	4	

Question	Answer	Marks	Guidance
4(i)	$A B C=\pi / 2-\pi / 7=5 \pi / 14 . \quad C B D=\pi-5 \pi / 14=9 \pi / 14$	B1	AG Or other valid exact method.
	Total:	1	
4(ii)	$\begin{aligned} & \sin \frac{\pi}{7}=\frac{1 / 2 B C}{8} \text { or } \frac{B C}{\sin \frac{2 \pi}{7}}=\frac{8}{\sin \frac{5 \pi}{14}} \text { or } \\ & B C^{2}=8^{2}+8^{2}-2(8)(8) \cos \frac{2 \pi}{7} \end{aligned}$	M1	
	$B C=6.94(2)$	A1	
	$\operatorname{arc} C D=$ their $6.94 \times 9 \pi / 14$	M1	Expect 14.02(0)
	arc $C B=8 \times 2 \pi / 7$	M1	Expect 7.18(1)
	perimeter $=6.94+14.02+7.18=28.1$	A1	
	Total:	5	

Question	Answer	Marks	Guidance
5(i)	$\tan x=\cos x \rightarrow \sin x=\cos ^{2} x$	M1	Use $\tan =\sin / \cos$ and multiply by \cos
	$\sin x=1-\sin ^{2} x$	M1	Use $\cos ^{2} x=1-\sin ^{2} x$
	$\sin x=0.6180$. Allow $(-1+\sqrt{ } 5) / 2$	M1	Attempt soln of quadratic in $\sin x$. Ignore solution -1.618. Allow $x=$ 0.618
	x-coord of $A=\sin ^{-1} 0.618=0.666 \quad$ cao	A1	Must be radians. Accept 0.212π
	Total:	4	
5(ii)	EITHER x-coord of B is π-their 0.666	(M1	Expect 2.475(3). Must be radians throughout
	y-coord of B is $\tan ($ their 2.475$)$ or $\cos ($ their 2.475$)$	M1	
	$x=2.48, y=-0.786$ or -0.787 cao	A1)	Accept $x=0.788 \pi$
	OR y-coord of B is $-(\cos$ or $\tan ($ their 0.666$))$	(M1	
	x-coord of B is $\cos ^{-1}\left(\right.$ their y) or $\pi+\tan ^{-1}$ (their y)	M1	
	$x=2.48, y=-0.786$ or -0.787	A1)	Accept $x=0.788 \pi$
	Total:	3	

Question	Answer	Marks	Guidance
6(i)	$\mathbf{B A}=\mathbf{O A}-\mathbf{O B}=-5 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$	B1	Allow vector reversed. Ignore label $\mathbf{B A}$ or $\mathbf{A B}$
	$\mathbf{O A} \cdot \mathbf{B A}=-10-3+10=-3$	M1	soi by ± 3
	$\|\mathbf{O A}\| \times\|\mathbf{B A}\|=\sqrt{2^{2}+3^{2}+5^{2}} \times \sqrt{5^{2}+1^{2}+2^{2}}$	M1	Prod. of mods for at least 1 correct vector or reverse.
	$\cos O A B=\frac{+/-3}{\sqrt{38} \times \sqrt{30}}$	M1	
	$O A B=95.1^{\circ}\left(\right.$ or $1.66{ }^{\text {c }}$)	A1	
	Total:	5	
6(ii)	$\Delta O A B=\frac{1}{2} \sqrt{38} \times \sqrt{30} \sin 95.1 . \text { Allow } 1 / 2 \sqrt{38} \times \sqrt{74} \sin 39.4$	M1	Allow their moduli product from (i)
	$=16.8$	A1	cao but NOT from $\sin 84.9\left(1.482^{\circ}\right)$
	Total:	2	

Question	Answer	Marks	Guidance
7(i)	$\mathrm{f}^{\prime}(x)=\left[\frac{3}{2}(4 x+1)^{1 / 2}\right][4]$	B1B1	Expect $6(4 x+1)^{1 / 2}$ but can be unsimplified.
	$\mathrm{f}^{\prime \prime}(x)=6 \times 1 / 2 \times(4 x+1)^{-1 / 2} \times 4$	B1^	Expect $12(4 x+1)^{-1 / 2}$ but can be unsimplified. Ft from their $\mathrm{f}^{\prime}(x)$.
	Total:	3	
7(ii)	$\mathrm{f}(2), \mathrm{f}^{\prime}(2), k \mathrm{f}^{\prime \prime}(2)=27,18,4 k$ OR 12	B1B1 ${ }^{\text {B }} 1$ §	Ft dependent on attempt at differentiation
	$27 / 18=18 / 4 k$ oe OR k " $"(2)=12 \Rightarrow k=3$	M1A1	
	Total:	5	

Question	Answer	Marks	Guidance
8(i)	$\mathrm{gf}(x)=3\left(2 x^{2}+3\right)+2=6 x^{2}+11$	B1	AG
	$\operatorname{fg}(x)=2(3 x+2)^{2}+3$ Allow $18 x^{2}+24 x+11$	B1	ISW if simplified incorrectly. Not retrospectively from (ii)
	Total:	2	
8(ii)	$y=2(3 x+2)^{2}+3 \Rightarrow 3 x+2=(\pm) \sqrt{(y-3) / 2}$ oe	M1	Subtract 3 ; divide by 2 ;square root. Or x / y interchanged. Allow $\frac{\sqrt{y-3}}{2}$ for 1st M
	$\Rightarrow x=(\pm) \frac{1}{3} \sqrt{(y-3) / 2}-\frac{2}{3} \mathrm{oe}$	M1	Subtract 2; divide by 3; Indep. of 1st M1. Or x / y interchanged.
	$\Rightarrow(\mathrm{fg})^{-1}(x)=\frac{1}{3} \sqrt{(x-3) / 2}-\frac{2}{3}$ oe	A1	Must be a function of x. Allow alt. method $\mathrm{g}^{-1} \mathrm{f}^{-1}(x)$ OR $18\left(x+\frac{2}{3}\right)^{2}+3 \Rightarrow(\mathrm{fg})^{-1}(x)=\sqrt{\frac{x-3}{18}}-\frac{2}{3}$
	Solve their $(\mathrm{fg})^{-1}(x) \geqslant 0$ or attempt range of fg	M1	Allow range $\geqslant 3$ for M only. Can be implied by correct answer or $x>$ 11
	Domain is $x \geqslant 11$	A1	
	Total:	5	

Question	Answer	Marks	Guidance
8(iii)	$6(2 x)^{2}+11=2(3 x+2)^{2}+3$	M1	Replace x with $2 x$ in gf and equate to their $\operatorname{fg}(x)$ from (i). Allow $\underline{12} x^{2}+11=$
	$6 x^{2}-24 x=0$ oe	A1	Collect terms to obtain correct quadratic expression.
	$x=0,4$	A1	Both required
	Total:	3	

Question	Answer	Marks	Guidance
9(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2 . \text { At } x=2, m=2$	B1B1	Numerical m
	Equation of tangent is $y-2=2(x-2)$	B1	Expect $\mathrm{y}=2 x-2$
	Total:	3	
9(ii)	Equation of normal $y-2=-1 / 2(x-2)$	M1	Through (2,2) with gradient $=-1 / m$. Expect $y=-1 / 2 x+3$
	$x^{2}-2 x+2=-1 / 2 x+3 \rightarrow 2 x^{2}-3 x-2=0$	M1	Equate and simplify to 3-term quadratic
	$x=-1 / 2, \quad y=31 / 4$	A1A1	Ignore answer of (2, 2)
	Total:	4	

Question	Answer	Marks	Guidance
9(iii)	At $x=-1 / 2, \operatorname{grad}=2(-1 / 2)-2=-3$	B1 ${ }^{\wedge}$	Ft their -1/2.
	Equation of tangent is $y-31 / 4=-3(x+1 / 2)$	*M1	Through their B with grad their -3 (not m_{1} or m_{2}). Expect $y=-3 x+7 / 4$
	$2 x-2=-3 x+7 / 4$	DM1	Equate their tangents or attempt to solve simultaneous equations
	$x=3 / 4, \quad y=-1 / 2$	A1	Both required.
	Total:	4	

Question	Answer	Marks	Guidance
10(i)	$2 x-2 / x^{3}=0$	M1	Set $=0$.
	$x^{4}=1 \Rightarrow x=1$ at A cao	A1	Allow 'spotted' $x=1$
	Total:	2	
10(ii)	$\mathrm{f}(x)=x^{2}+1 / x^{2}(+c)$ cao	B1	
	$\frac{189}{16}=16+1 / 16+c$	M1	$\operatorname{Sub}\left(4, \frac{189}{16}\right) . c$ must be present. Dep. on integration
	$c=-17 / 4$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
10(iii)	$x^{2}+1 / x^{2}-17 / 4=0 \Rightarrow 4 x^{4}-17 x^{2}+4(=0)$	M1	Multiply by $4 x^{2}$ (or similar) to transform into 3-term quartic.
	$\left(4 x^{2}-1\right)\left(x^{2}-4\right)(=0)$	M1	Treat as quadratic in x^{2} and attempt solution or factorisation.
	$x=1 / 2,2$	A1A1	Not necessary to distinguish. Ignore negative values. No working scores 0/4
	Total:	4	
10(iv)	$\int\left(x^{2}+x^{-2}-17 / 4\right) \mathrm{d} x=\frac{x^{3}}{3}-\frac{1}{x}-\frac{17 x}{4}$	B2,1,0 ${ }^{\text {d }}$	Mark final integral
	$(8 / 3-1 / 2-17 / 2)-(1 / 24-2-17 / 8)$	M1	Apply their limits from (iii) (Seen). Dep. on integration of at least 1 term of y
	Area $=9 / 4$	A1	Mark final answer. $\int y^{2}$ scores 0/4
	Total:	4	

