Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International ASIA Level - March 2016	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

1	$\begin{array}{ll} \mathrm{E}(X)=\frac{10}{3} \text { oe } & \operatorname{Var}(X)=\frac{25}{9} \text { oe } \\ \mathrm{E}(Y)=10 & \operatorname{Var}(Y)=5 \end{array}$ $\mathrm{E}(X+Y)=\frac{40}{3}$ oe \quad or $13.3(3 \mathrm{sf})$ $\operatorname{Var}(X+Y)=" \frac{25}{9} "+" 5 "$ $\mathrm{sd}=\frac{\sqrt{70}}{3}$ oe \quad or $2.79(3 \mathrm{sf})$	B1 B1 B1 M1 A1	For $\mathrm{E}(X)$ and $\operatorname{Var}(X)$ For $\mathrm{E}(Y)$ and $\operatorname{Var}(Y)$ OR For $\mathrm{E}(X)$ and $\mathrm{E}(Y)$ For $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$ For adding 2 (appropriate) variances or $\mathrm{sd}=$ or $\sqrt{2} \times \frac{5}{3}$
2	$\begin{align*} & \mathrm{H}_{0}: \mathrm{P}(\text { hit target })=0.65 \tag{5}\\ & \mathrm{H}_{1}: \mathrm{P}(\text { hit target })>0.65 \\ & { }^{20} \mathrm{C}_{2} \times 0.35^{2} \times 0.65^{18}+19 \times 0.35 \times 0.65^{19} \\ & +0.65^{20} \\ & =0.0121(3 \mathrm{sf}) \end{align*}$ Comp 0.01 There is no evidence (at the 1% level) that she has improved	B1 M1 A1 $\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \tag{5} \end{array}$	Allow $p=0.65$ Allow $p>0.65$ Allow one end error. Allow p/q mix. Allow (1-) for \mathbf{M} mark A mark recovered following valid comparison For valid comparison She has probably not improved. No contradictions. (SR Use of Normal M0, but M1A1 for valid comparison could be awarded)
3 (i)	H_{0} : pop mean journey time $=35.2 \mathrm{mins}$ H_{1} : pop mean journey time <35.2 mins $\frac{34.7-35.2}{5.6 / \sqrt{25}} \quad(=-0.446)$ $\begin{aligned} & \Phi(<"-0.446 ")=1-\Phi(" 0.446 ") \\ & =0.328(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 $[4]$	Allow " μ ". Not "mean journey time" For standardising ($\sqrt{ } 25$ needed $)$ For correct area consistent with their working As final answer
(ii)	H_{0} is rejected but Type II error can only be made if H_{0} is not rejected	B1 [1]	Allow just " H_{0} is rejected." oe
4	$\begin{aligned} & X-2 Y \sim \mathrm{~N}\left(0.1,0.2^{2}+4 \times 0.1^{2}\right) \text { soi } \\ & (=\mathrm{N}(0.1,0.08)) \quad(=-0.354) \\ & \frac{0-0.1}{\sqrt{ } 0.08^{\prime \prime}} \quad \\ & \Phi("-0.354 \mathrm{"})=1-\Phi(" 0.354 ") \\ & =0.362(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{\|ll} \text { B1 } & \text { B1 } \\ & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & {[5]} \end{array}$	B1 for $\pm 0.1 \mathbf{B} 1$ for $0.2^{2}+4 \times 0.1^{2}$ For standardising. Allow without $\sqrt{ }$ sign For correct area consistent with their working
5 (i)	$\begin{align*} & \operatorname{Est}(\mu)=\frac{14910}{150} \quad(=99.4) \\ & \operatorname{Est}\left(\sigma^{2}\right)=\frac{150}{149}\left(\frac{1525000}{150}-" 99.44^{2}\right) \\ & =288.228 \\ & z=2.576 \\ & " 99.4 " \pm z \times \sqrt{288.228 \div 150} \\ & \mathrm{CI}=95.8 \text { to } 103(3 \mathrm{sf}) \tag{6} \end{align*}$	$\begin{array}{\|l} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	Allow M1 if $\frac{150}{149}$ omitted Accept 2.574-2.579 Any z (NB Use of biased Var can score 5/6 max)
(ii)	100 lies within this CI Hence yes	B1^ [1]	Both needed, ft their CI

Page 5	Mark Scheme	Syllabus $\overline{\text { Paper }} \overline{\mathrm{r}}$	
	Cambridge International AS/A Level - March 2016	9709	$\mathbf{7 2}$

(iii)	To avoid bias or Necessary to enable statistical inference	B1 [1]	Or any equivalent
6 (i)	$\begin{aligned} & \lambda=3.3 \times \frac{25}{30}=2.75 \\ & \mathrm{e}^{-2.75}\left(1+2.75+\frac{2.75^{2}}{2}\right) \\ & =0.481(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow any λ Allow one end error As final answer. Accept 0.482
(ii) (a)	$\begin{aligned} & \lambda\left(=3.3 \times \frac{365}{30}\right)=40.15 \\ & (X \sim \operatorname{Po}(40.15) \Rightarrow X \sim \mathrm{~N}(40.15,40.15)) \\ & \frac{50.540 .15)^{\prime \prime}}{\sqrt{440.15 "}} \quad(=1.633) \\ & 1-\Phi(" 1.633 ") \\ & =0.0513(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 [4]	Accept 40.1 or 40.2 Allow with incorrect or no cc OR no $\sqrt{ }$ sign For correct area consistent with their working Accept 0.0512
(b)	$\lambda>15$	B1 [1]	or similar
(iii)	$\begin{align*} & \lambda=\frac{73}{30} \text { oe or } 1.1+1.33=2.43(3 \mathrm{sf}) \\ & 1-\mathrm{e}^{-2.43}\left(1+2.43+\frac{2.43^{2}}{2}+\frac{2.43^{3}}{3!}\right) \\ & =0.228(3 \mathrm{sf}) \tag{3} \end{align*}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow any λ. Allow one end error
$7 \quad$ (a) (i)	$\begin{aligned} & \mathrm{E}(X)=1.5 \\ & \frac{2}{9} \int_{0}^{3}\left(3 x^{3}-x^{4}\right) \mathrm{d} x \\ & =\frac{2}{9}\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3} \\ & =\frac{2}{9}\left[\frac{243}{4}-\frac{243}{5}\right] \quad(=2.7) \\ & \operatorname{Var}(X)\left(=2.7-1.5^{2}\right)=0.45 \mathrm{oe} \end{aligned}$	B1 M1 M1 A1 $\sqrt{\wedge}$ [4]	Attempt integ $x^{2} \mathrm{f}(x)$ ignore limits Sub correct limits into correct integral Ft their $\mathrm{E}(X)$, but no ft for -ve Var.
(ii)	0.5	B1 [1]	
(iii)	$\begin{aligned} & \left(1-\frac{13}{27}\right) \div 2 \\ & =\frac{7}{27} \text { or } 0.259 \end{aligned}$	M1 A1 [2]	or $\frac{2}{9} \int_{2}^{3}\left(3 x-x^{2}\right) \mathrm{d} x$ oe As final answer
(b)	$\begin{array}{ll} \frac{1}{2} \times 2 \times 2 a=\frac{1}{2} & \text { or } \int_{0}^{2} a x \mathrm{~d} x=\frac{1}{2} \\ a=\frac{1}{4} & \\ \frac{1}{2} \times b \times \frac{1}{4} b=1 & \text { or } \\ \int_{0}^{b} \frac{1}{4} x \mathrm{~d} x=1 \\ b=2 \sqrt{2} & \text { or } b=2 \times \sqrt{2} \end{array}$	M1 A1 M1 A1 $\sqrt{\wedge}$ [4]	Attempt correct equation in ' a ' or $\frac{1}{2} \times b \times a b=1$ or $\int_{0}^{b} a x \mathrm{~d} x=1$ attempt correct equation in (a and) b Allow $b=\sqrt{8}$ or $2.83(3 \mathrm{sf})$ Ft incorrect a, both Ms needed
		Total for paper 50	

