Page 4	Mark Scheme	Syllabus $\overline{\text { Paper }}$	
	Cambridge International AS/A Level - March 2016	9709	62

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 (i) \& \multicolumn{4}{|l|}{\(\Sigma x=862\)} \& B1 \& 1 \& Must be stated or replaced in (ii) Can see (i) and (ii) in any order \\
\hline (ii) \& \multicolumn{4}{|l|}{\[
\begin{aligned}
\& 362 / 10+a=86.2 \\
\& a=50
\end{aligned}
\]} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& \(86.2 \pm 36.2\) seen oe Correct answer, nfww \\
\hline 2 \& \multicolumn{4}{|l|}{\[
\begin{aligned}
\& \begin{array}{l}
\mathrm{P}(0)=8 / 10 \times 7 / 9 \times 6 / 8=42 / 90 \\
\mathrm{P}(1 \mathrm{~W})=\mathrm{P}(\mathrm{~W}, \mathrm{NW}, \mathrm{NW}) \times 3=2 / 10 \times 8 / 9 \times 7 / 8 \\
\times 3 \\
=42 / 90 \\
\mathrm{P}(2 \mathrm{~W})=\mathrm{P}(\mathrm{~W}, \mathrm{~W}, \mathrm{NW}) \times 3=2 / 10 \times 1 / 9 \times 8 / 8 \\
\times 3 \\
=6 / 90
\end{array} \\
\& =1
\end{aligned}
\]} \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 4 \& \begin{tabular}{l}
\(0,1,2\), seen in table with attempt at prob. \\
3 -factor prob seen with different denoms. \\
Mult by 3 \\
All correct
\end{tabular} \\
\hline 3 (i) \& \multicolumn{4}{|l|}{\[
\begin{aligned}
\& \mathrm{P}(R)[(1,4),(2,5),(3,6),(4,7),(5,8)] \times 2 / 64 \\
\& \quad=10 / 64
\end{aligned}
\]} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 2 \& List of at least 4 different options or possibility space diagram Correct answer \\
\hline (ii) \& \multicolumn{4}{|l|}{\[
\begin{aligned}
\& \mathrm{P}(S)=[(3,8)(3,7)(4,8)(4,7)(4,6)(4,5)(5,8) \\
\& (5,7)(5,6)(6,8)(6,7)(7,8)] \times 2+ \\
\& (5,5)(6,6)(7,7)(8,8) \\
\& =28 / 64
\end{aligned}
\]} \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& 2 \& \begin{tabular}{l}
List of at least 14 different options or ticks oe from possibility space \\
Correct answer
\end{tabular} \\
\hline (iii) \& \multicolumn{4}{|l|}{\begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{P}(R \cap S)=4 / 64 \\
\& 4 / 64 \neq 10 / 64 \times 28 / 64
\end{aligned}
\] \\
Events are not independent
\end{tabular}} \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& 3 \& Comparing their \(\mathrm{P}(R \cap S)\) with (i) \(\times\) (ii) with values Correct answer \\
\hline \(4 \quad\) (i) \& \multicolumn{4}{|l|}{32} \& B1 \& 1 \& \\
\hline (ii) \& \multicolumn{4}{|l|}{} \& M1

A1

B1

B1 \& \& | attempt at fd or scaled freq (at least $3 \mathrm{f} / \mathrm{cw}$ attempt) |
| :--- |
| correct heights seen on diagram |
| Correct bar ends |
| Labels fd and time (mins) and linear axes or squiggle | \\

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus $\overline{\text { Paper }} \overline{\mathrm{r}}$	
	Cambridge International AS/A Level - March 2016	9709	62

(iii)	$\begin{aligned} & (17.5 \times 18+35 \times 32+52.5 \times 9+70 \times 4) / 63 \\ & =2187.5 / 63=34.7 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	$\Sigma \mathrm{fx} / 63$ where x is midpoint attempt not end pt or cw Correct answer
5 (i)	P (Abroad given camping) $\begin{aligned} & =\frac{P(A \cap C)}{P(A \cap C)+P(H \cap C)} \\ & =\frac{0.35 \times 0.15}{0.35 \times 0.15+0.65 \times 0.4} \\ & =\frac{0.0525}{0.3125} \\ & =0.168 \end{aligned}$	M1 A1 M1 A1 A1	5	Attempt at $\mathrm{P}(A \cap C)$ seen alone anywhere Correct answer seen as num or denom of a fraction Attempt at $\mathrm{P}(C)$ seen anywhere Correct unsimplified answer seen as num or denom of a fraction Correct answer
(ii)	$(0.65)^{\mathrm{n}}<0.002$ $\begin{aligned} & n>\lg (0.002) / \lg (0.65) \\ & n=15 \end{aligned}$	M1 M1 A1	3	Eqn with 0.65 or 0.35 , power $n, 0.002$ or 0.998 Attempt to solve their eqn by logs or trial and error need a power Correct answer
6 (i)	$\begin{aligned} & { }^{15} \mathrm{P}_{5} \\ & =360360 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	oe, can be implied $\operatorname{Not}{ }^{15} \mathrm{C}_{5}$ Correct answer
(ii)	$\begin{aligned} & 5 \times 10 \times 4 \times 9 \times 3 \\ & =5400 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	2	Mult 5 numbers Correct answer
(iii)		$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$ A1	3	Mult 2 combs, ${ }^{5} \mathrm{C}_{x} \times{ }^{10} \mathrm{C}_{y}$ Summing 2 or 3 two-factor options, $x+y=5$ Correct answer
(iv)	$\begin{array}{ll} \text { (Couple) } & \mathrm{M}(4) \\ \text { ManWife }+3 & \mathrm{~F}(9) \\ \text { ManWife }+2 & 0={ }^{4} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{0}=4 \\ \text { Man } & 1={ }^{4} \mathrm{C}_{2} \times{ }^{9} \mathrm{C}_{1}=54 \\ \quad \text { Total }=58 \end{array}$	M1 M1 A1	3	Mult 2 combs ${ }^{4} \mathrm{C}_{x}$ and ${ }^{9} \mathrm{C}_{y}$ Summing both options $x+y=3$, gender correct Correct answer
$7 \quad$ (i)	$\begin{gathered} z=-1.645 \\ -1.645=\frac{0.9-m}{0.35} \\ m=1.48 \end{gathered}$	B1 M1 A1	3	$\pm 1.64 \text { to } 1.65 \text { seen }$ Standardising with a z-value accept $(0.35)^{2}$ Correct answer
(ii)	$\begin{aligned} & \mathrm{P}(<2)=\mathrm{P}\left(z<\frac{2-1.476}{0.35}\right) \\ & =\mathrm{P}(z<1.50) \\ & =0.933 \\ & \text { Prob }=(0.9332)^{4} \\ & =0.758 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	5	Standardising no sq, FT their m, no cc Correct area i.e. F Accept correct to 2sf here Power of 4 , from attempt at $\mathrm{P}(z)$ Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	62

(iii) $\quad \mathrm{P}(t>0.6 \mu)=\mathrm{P}\left(z>\frac{0.6 \mu-\mu}{\mu / 3}\right)$
$=\mathrm{P}(z>-1.2)$
$=0.885$
Standardising attempt with 1 or 2 variables
M1
A1 3 Eliminating μ or σ Correct final answer

