Dere 4	Mark Sahan				9709 m	<u>16 ms 42</u>	
Page 4	Cambridge International AS/A Level – March 2016				9709	Paper 42	
Г							
1		M1		Attempt KE gain or WD against Res Both correct (unsimplified) KE gain = 3937.5 J WD = 2000 J			
	KE gain = $\frac{1}{2} \times 105 \times (10^2 - 5^2)$ WD against Resistance = 50×40	A1					
	Total WD = 5937.5 J	B1	3	WD = KE gain + WD against Res			
	Alternat	ive meth	ıod	ıod			
	$10^2 = 5^2 + 2 \times 50 \times a \ [a = 0.75]$ DF - 40 = 105a	M1		Using $v^2 = u^2 + 2a$ Newton's 2nd law	as and applying to the system	ıg 1	
	$DF = 40 + 105 \times 0.75 = 118.75$	A1					
	Total WD = $118.75 \times 50 = 5937.5$ J	B1	3	$WD = DF \times 50$			
2 (i)	DF = 1350	B1					
	$P = 1350 \times 32 = 43.2 \mathrm{kW}$	B1	2				
(ii)	$DF - 1350 - 1200g \times 0.1 = 0$ [DF = 2550]	M1		For using Newton the car up the hill Allow use of $\theta = 5$'s 2nd law ap (3 terms) 5.7°	plied to	
	DF = 76500/v	M1		For using $DF = P/$	'v		
	$v = 30 \mathrm{ms}^{-1}$	A1	3				
3 (i)		M1		For resolving forc	es horizontall	У	
	$R_x = 40 \times (24/25) - 30 \times (7/25)$ [= 30]	A1		Allow $R_x = 40 \cos 16.3 -$	- 30 sin 16.3		
		M1		For resolving forc	es vertically		
	$R_y = 50 - 40 \times (7/25) - 30 \times (24/25)$ [= 10]	A1		Allow $R_y = 50 - 40 \sin 16.3 - 30 \cos 16.3$			
	$R = \sqrt{R_x^2 + R_y^2}$ and $\theta = \tan^{-1} \begin{pmatrix} R_y \\ R \end{pmatrix}$			For using Pythago force <i>R</i> and trigor θ made by the resu	bras to find the nometry to fin ultant with the	e resultant d the angle e <i>x</i> -axis	
	(/ ^x x)	M1					
	R = 31.6 N and $\theta = 18.4^{\circ}$ with the positive <i>x</i> -axis	A1	6				

Page 5

Syllabus	Paper
9709	42

Alternative method for 3(i)							
(i)		M1		Resolve forces along 40 N direction			
	$R_1 = 40 - 50 \times (7/25) \qquad [= 26]$	A1		Allow $R_1 = 40 - 50 \sin 16.3$			
		M1		Resolve forces along 30 N direction			
	$R_2 = 30 - 50 \times (24/25) [=-18]$	A1		Allow $R_2 = 30 - 50 \cos 16.3$			
	$R^2 = R_1^2 + R_2^2$ and $\arctan(-R_2/R_1)$	M1		Use Pythagoras and trigonometry			
	$R = 31.6 \text{ N} \text{and} \text{direction is} \\ 34.7 - \alpha = 18.4^{\circ} \text{ with positive } x\text{-axis}$	A1	6	Using $\arctan(18/26) = 34.7^{\circ}$ is the angle between <i>R</i> and the 40 N force			
(ii)	P = 40	B1	1				
4 (i)	$5\cos\alpha = F$ $[F=4]$	M1		For resolving forces horizontally Allow use of $\alpha = 36.9^{\circ}$ throughout			
	$R + 5\sin\alpha = 8 \qquad [R = 5]$	M1		For resolving forces vertically			
	$4 = 5\mu$	M1		For using $F = \mu R$			
	$\mu = 0.8$	A1	4				
(ii)	$R + 10\sin \alpha = 8$ [R = 2] and $F = 0.8 \times R$ [F = 1.6]	B1		For resolving forces vertically to find the new value of R and using $F = \mu R$			
	$10\cos\alpha - F = 0.8a$	M1		For resolving horizontally			
	$a = 8 \mathrm{ms}^{-2}$	A1	3				
5 (i)	$[2500 - 2000g \times 0.1 - 250 = 2000a]$	M1		For using Newton's 2nd law for the system or for applying Newton's 2nd law to the car and to the trailer and for solving for <i>a</i> Allow use of $\alpha = 5.7^{\circ}$ throughout			
	$a = 1/8 = 0.125 \mathrm{ms}^{-2}$	A1					
	$2500 - T - 100 - 1200g \times 0.1$ = 1200 × 0.125 or $T - 150 - 800g \times 0.1$ = 800 × 0.125	M1		For applying Newton's 2nd law either to the car or to the trailer to set up an equation for T			
	$T = 1050 \mathrm{N}$	A1	4				

Page 6	9709_m16_ms Mark Scheme Svilabus Pape						
	Cambridge International AS/A	Cambridge International AS/A Level -			9709	42	
(ii)	$-2000g \times 0.1 - 250 = 2000a$ [$a = -1.125$]	M1	For applying Newton's 2nd law to the system with no driving force to set up a equation for <i>a</i>				
	0 = 30 - 1.125t	M1		For using $v = u + at$			
	$t = 26.7 \mathrm{s}$	A1	3	Allow $t = \frac{80}{3}$ s			
	Alternative n	nethod f	for 5	(ii)			
(ii)	$\begin{bmatrix} 1/2 & (2000) & 30^2 = \\ 250s + 2000 \times g \times 0.1s \end{bmatrix}$ $\rightarrow s = 400$ M1 Apply work/energy equation to find s distance travelled up the plane with nerving force (3 terms) as: KE loss = WD against F + PE gain			find <i>s</i> the with no gain			
	$[400 = \frac{1}{2} (30 + 0)t]$	M1		For using $x = \frac{1}{2}(u$	(t+v)t		
	$t = 26.7 \mathrm{s}$	A1	3	Allow $t = 80/3$ s			
6 (i)	[T = 0.8a for A2 - T = 0.2a for B0.2g = (0.2 + 0.8)a system]	M1		For applying New particle <i>A</i> or to pa	rticle <i>B</i> or to t	v either to the system	
		M1		For applying N2 to a second particle (if needed) and solving for <i>a</i>			
	[<i>a</i> = 2]	A1					
	$[2.5 = \frac{1}{2} \times 2 \times t^2]$	M1		A complete method for finding <i>t</i> such as using $s = ut + \frac{1}{2}at^2$			
	$t = 1.58 \mathrm{s}$	A1	5	Allow $t = \frac{1}{2}\sqrt{10}$			
	First Alternativ	e Metho	od fo	or 6(i)			
(i)	$[0.2 \times g \times 2.5 \text{ or } \frac{1}{2}(0.2 + 0.8)v^2]$	M1		Finding PE loss of	r KE gain (sy	stem)	
	$[0.2 \times g \times 2.5 = \frac{1}{2}(0.2 + 0.8)v^2]$	M1		Using PE loss = K	KE gain and fi	nd v	
	$[v^2 = 10]$	A1					
	$[2.5 = \frac{1}{2} (0 + \sqrt{10})t]$	M1		For using $s = \frac{1}{2}(u$	(+v)t		
	$t = 1.58 \mathrm{s}$	A1	5	Allow $t = \frac{1}{2}\sqrt{10}$			

		9709 m	16 ms 4	2
Page 7	Mark Scheme	Syllabus	Paper	
	Cambridge International AS/A Level – March 2016	9709	42	

Second Alternative Method for 6(i)							
(i)	$\begin{bmatrix} T = 0.8a & 2 - T = 0.2a \\ \rightarrow & T = 1.6 \text{ N} \end{bmatrix}$	M1		Apply N2 to <i>A</i> and <i>B</i> and solve for <i>T</i>			
	$[T \times 2.5 = \frac{1}{2} (0.8) v^2]$	M1		Use WD by $T = KE$ gain by A, find v			
	$[v^2 = 10]$	A1					
	$[2.5 = \frac{1}{2} (0 + \sqrt{10})t]$	M1		Using $s = \frac{1}{2}(u+v)t$			
	$t = 1.58 \mathrm{s}$	A1	5	Allow $t = \frac{1}{2}\sqrt{10}$			
(ii)	$N = 8$ and $F = 0.1 \times N = 0.8$	B1					
	T - 0.8 = 0.8a and $2 - T = 0.2aor 0.2g - 0.8 = (0.2 + 0.8)a$	M1		For applying N2 to both particles or to the system and solving for <i>a</i>			
	<i>a</i> = 1.2	A1					
	$v^2 = 0 + 2 \times 1.2 \times 2.5$	M1		For using $v^2 = u^2 + 2as$			
	$v = \sqrt{6} = 2.45 \mathrm{ms}^{-1}$	A1	5				
	First Alternativ	e Metho	od fo	r 6(ii)			
(ii)	$N = 8$ and $F = 0.1 \times N = 0.8$	B1					
	$[0.2 \times g \times 2.5 = \frac{1}{2} (0.8 + 0.2) v^2 + 0.8 \times 2.5]$	M1		Apply work/energy to the system as PE loss = KE gain + WD against resistance			
		A1		Correct Work/Energy equation			
		M1		For solving for <i>v</i>			
	$v = \sqrt{6} = 2.45 \mathrm{ms}^{-1}$	A1	5				
	Second Alternati	ve Meth	nod f	or 6(ii)			
(ii)	$N = 8$ and $F = 0.1 \times N = 0.8$	B1					
	T - 0.8 = 0.8a and $2 - T = 0.2a$	M1		Use N2 for A and B and solve for T			
	$T = 1.76 \mathrm{N}$	A1					
	$[T \times 2.5 = 0.8 \times 2.5 + \frac{1}{2} (0.8) v^2]$	M1		Apply Work/Energy equation to A			
	$v = \sqrt{6} = 2.45 \mathrm{ms}^{-1}$	A1	5				

D 0	Marila O alta ar				9709_m	<u>16 ms 4</u> 2	
Page 8	Mark Schen	Mark Scheme			Syllabus	Paper	
	Cambridge International AS/A Level – Ma				9709	42	
7 (i)	k = 40	B1	1				
(ii)	Correct for $0 \le t \le 4$	B1√ [^]		Quadratic curve with minimum at $t = 1$ approximately, $v = 0$ at $t = 2$ and $v = k$ at $t = 4$. ft on k			
	Correct for $4 \le t \le 14$	B1√ [^]		Horizontal line at $v = k$. ft on k			
	Correct $14 \le t \le 20$	B1√ [^]	3	Line with negative gradient from $(14, k)$ to $(20, 28)$. ft on k			
(iii)	For $0 \le t \le 4$ $a = 10t - 10$	M1		Attempting to diff	erentiate to fi	nd a	
	1 < <i>t</i> ≤ 4	A1	2				
(iv)	$\int (5t^2 - 10t) dt = \frac{5}{3}t^3 - 5t^2$	M1		For attempting to i quadratic expression apply limits over t	integrate the g on and attemp he interval t =	given pting to = 0 to $t = 4$	
	$A = \left[\frac{5}{3}t^3 - 5t^2\right]_0^2 =$			Use of limits to ob t = 0 to $t = 2$ and $Bto t = 4$	otain <i>A</i> , the in 3, the integral	tegral from $t = 2$	
	$\left(\frac{5}{3}2^3 - 5 \times 2^2\right)$ $-\left(\frac{5}{3}0^3 - 5 \times 0^2\right)$			Full evaluation of A not necessary at this stage $\left[A = -\frac{20}{3}\right]$			
	$B = \left[\frac{5}{3}t^3 - 5t^2\right]_2^4 = \left(\frac{5}{3}4^3 - 5 \times 4^2\right)$			Full evaluation of stage $\left[B = \frac{100}{3}\right]$	uation of <i>B</i> not necessary at this and the distance travelled in the = 4 to $t = 20$ using area s or integration. ft on <i>k</i> appling to evaluate the total travelled by <i>P</i> in the interval $t = 0$ The distance travelled in the first s must have been found using on methods.		
	$-\left(\frac{5}{3}2^3-5\times2^2\right)$	A1					
	$C = (40 \times 10) + 0.5 \times (40 + 28) \times 6$	B1√ [^]		For finding the dis interval $t = 4$ to $t =$ properties or integ			
	-A + B + C = [20/3 + 100/3 + 400 + 204]	M1		For attempting to a distance travelled to $t = 20$. The dista 4 seconds must ha integration method			
	Total distance travelled = 644 m	A1	5				