Page 4	Mark Scheme	Syllabus $\overline{\text { Paper }} \overline{\mathrm{r}}$	
	Cambridge International AS/A Level - March 2016	9709	$\mathbf{4 2}$

1	KE gain $=1 / 2 \times 105 \times\left(10^{2}-5^{2}\right)$ WD against Resistance $=50 \times 40$ Total WD $=5937.5 \mathrm{~J}$	M1 A1 B1	3	Attempt KE gain or WD against Res Both correct (unsimplified) KE gain $=3937.5 \mathrm{~J}$ WD $=2000 \mathrm{~J}$ $\mathrm{WD}=\mathrm{KE}$ gain +WD against Res
Alternative method				
	$\begin{aligned} & 10^{2}=5^{2}+2 \times 50 \times a[a=0.75] \\ & \mathrm{DF}-40=105 a \\ & \mathrm{DF}=40+105 \times 0.75=118.75 \\ & \text { Total WD }=118.75 \times 50=5937.5 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	3	Using $v^{2}=u^{2}+2 a s$ and applying Newton's 2nd law to the system $\mathrm{WD}=\mathrm{DF} \times 50$
2 (i)	$\begin{aligned} & \mathrm{DF}=1350 \\ & P=1350 \times 32=43.2 \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(ii)	$\begin{aligned} & \text { DF }-1350-1200 g \times 0.1=0 \\ & \quad[\mathrm{DF}=2550] \\ & \mathrm{DF}=76500 / v \\ & v=30 \mathrm{~ms}^{-1} \end{aligned}$	M1 M1 A1	3	For using Newton's 2nd law applied to the car up the hill (3 terms) Allow use of $\theta=5.7^{\circ}$ For using $\mathrm{DF}=P / v$
3 (i)	$\begin{array}{r} R_{x}=40 \times(24 / 25)-30 \times(7 / 25) \\ {[=30]} \end{array}$ $\begin{array}{r} R_{y}=50-40 \times(7 / 25)-30 \times(24 / 25) \\ {[=10]} \end{array}$ $R=\sqrt{R_{x}^{2}+R_{y}^{2}}$ and $\theta=\tan ^{-1}\left(\mathrm{R}_{\mathrm{y}} / \mathrm{R}_{\mathrm{x}}\right)$ $R=31.6 \mathrm{~N}$ and $\theta=18.4^{\circ}$ with the positive x-axis	M1 A1 M1 A1 M1 A1	6	For resolving forces horizontally Allow $R_{x}=40 \cos 16.3-30 \sin 16.3$ For resolving forces vertically Allow $R_{y}=50-40 \sin 16.3-30 \cos 16.3$ For using Pythagoras to find the resultant force R and trigonometry to find the angle θ made by the resultant with the x-axis

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	$\mathbf{9 7 0 9}$	$\mathbf{4 2}$

Alternative method for 3(i)				
(i)	$R_{1}=40-50 \times(7 / 25) \quad[=26]$ $R_{2}=30-50 \times(24 / 25) \quad[=-18]$ $R^{2}=R_{1}{ }^{2}+R_{2}{ }^{2}$ and $\arctan \left(-R_{2} / R_{1}\right)$ $R=31.6 \mathrm{~N}$ and direction is $34.7-\alpha=18.4^{\circ}$ with positive x-axis	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	6	Resolve forces along 40 N direction Allow $R_{1}=40-50 \sin 16.3$ Resolve forces along 30 N direction Allow $R_{2}=30-50 \cos 16.3$ Use Pythagoras and trigonometry Using $\arctan (18 / 26)=34.7^{\circ}$ is the angle between R and the 40 N force
(ii)	$P=40$	B1	1	
4 (i)	$\begin{array}{ll} 5 \cos \alpha=F & {[F=4]} \\ R+5 \sin \alpha=8 & {[R=5]} \\ 4=5 \mu & \\ \mu=0.8 & \end{array}$	M1 M1 M1 A1	4	For resolving forces horizontally Allow use of $\alpha=36.9^{\circ}$ throughout For resolving forces vertically For using $F=\mu R$
(ii)	$\begin{array}{ll} R+10 \sin \alpha=8 & {[R=2]} \\ \text { and } \\ F=0.8 \times R & {[F=1.6]} \\ 10 \cos \alpha-F=0.8 a & \\ a=8 \mathrm{~ms}^{-2} & \end{array}$	B1 M1 A1	3	For resolving forces vertically to find the new value of R and using $F=\mu R$ For resolving horizontally
5 (i)		M1 A1 M1 A1	4	For using Newton's 2nd law for the system or for applying Newton's 2nd law to the car and to the trailer and for solving for a Allow use of $\alpha=5.7^{\circ}$ throughout For applying Newton's 2nd law either to the car or to the trailer to set up an equation for T

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	$\mathbf{4 2}$

(ii)	$\begin{aligned} & -2000 g \times 0.1-250=2000 a \\ & \quad[a=-1.125] \\ & 0=30-1.125 t \\ & t=26.7 \mathrm{~s} \end{aligned}$	M1 M1 A1	3	For applying Newton's 2nd law to the system with no driving force to set up an equation for a For using $v=u+a t$ Allow $t=80 / 3 \mathrm{~s}$
Alternative method for 5(ii)				
(ii)	$\begin{aligned} & {\left[1 / 2(2000) 30^{2}=\right.} \\ & \quad 250 s+2000 \times g \times 0.1 s] \\ & \quad \rightarrow s=400 \\ & {[400=1 / 2(30+0) t]} \\ & t=26.7 \mathrm{~s} \end{aligned}$	M1 M1 A1	3	Apply work/energy equation to find s the distance travelled up the plane with no driving force (3 terms) as: KE loss $=\mathrm{WD}$ against $\mathrm{F}+\mathrm{PE}$ gain For using $x=1 / 2(u+v) t$ Allow $t=80 / 3 \mathrm{~s}$
6 (i)	$\begin{aligned} & {[T=0.8 a \quad \text { for } A} \\ & 2-T=0.2 a \quad \text { for } B \\ & 0.2 g=(0.2+0.8) a \text { system }] \\ & \\ & {[a=2]} \\ & {\left[2.5=1 / 2 \times 2 \times t^{2}\right]} \\ & t=1.58 \mathrm{~s} \end{aligned}$	M1 M1 A1 M1 A1	5	For applying Newton's 2nd law either to particle A or to particle B or to the system For applying N 2 to a second particle (if needed) and solving for a A complete method for finding t such as using $s=u t+1 / 2 a t^{2}$ Allow $t=\frac{1}{2} \sqrt{10}$
First Alternative Method for 6(i)				
(i)	$\begin{aligned} & {\left[0.2 \times g \times 2.5 \text { or } 1 / 2(0.2+0.8) v^{2}\right]} \\ & {\left[0.2 \times g \times 2.5=1 / 2(0.2+0.8) v^{2}\right]} \\ & {\left[v^{2}=10\right]} \\ & {[2.5=1 / 2(0+\sqrt{ } 10) t]} \\ & t=1.58 \mathrm{~s} \end{aligned}$	M1 M1 A1 M1 A1	5	Finding PE loss or KE gain (system) Using PE loss $=\mathrm{KE}$ gain and find v For using $s=1 / 2(u+v) t$ Allow $t=\frac{1}{2} \sqrt{10}$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	42

Second Alternative Method for 6(i)

(i)	$\begin{aligned} & {[T=0.8 a \quad 2-T=0.2 a} \\ & \quad \rightarrow T=1.6 \mathrm{~N}] \\ & {\left[T \times 2.5=1 / 2(0.8) v^{2}\right]} \\ & {\left[v^{2}=10\right]} \\ & {[2.5=1 / 2(0+\sqrt{ } 10) t]} \\ & t=1.58 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	5	Apply N2 to A and B and solve for T Use WD by $\mathrm{T}=\mathrm{KE}$ gain by A, find v Using $s=1 / 2(u+v) t$ Allow $t=\frac{1}{2} \sqrt{10}$
(ii)	$\begin{aligned} & N=8 \text { and } F=0.1 \times N=0.8 \\ & T-0.8=0.8 a \text { and } 2-T=0.2 a \\ & \text { or } 0.2 g-0.8=(0.2+0.8) a \\ & a=1.2 \\ & v^{2}=0+2 \times 1.2 \times 2.5 \\ & v=\sqrt{ } 6=2.45 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1 M1 A1	5	For applying N2 to both particles or to the system and solving for a For using $v^{2}=u^{2}+2 a s$
First Alternative Method for 6(ii)				
(ii)	$N=8 \text { and } F=0.1 \times N=0.8$ $\begin{aligned} & {[0.2 \times g \times 2.5=} \\ & \left.\quad 1 / 2(0.8+0.2) v^{2}+0.8 \times 2.5\right] \end{aligned}$ $v=\sqrt{ } 6=2.45 \mathrm{~ms}^{-1}$	B1 M1 A1 M1 A1	5	Apply work/energy to the system as PE loss = KE gain + WD against resistance Correct Work/Energy equation For solving for v
Second Alternative Method for 6(ii)				
(ii)	$\begin{aligned} & N=8 \text { and } F=0.1 \times N=0.8 \\ & T-0.8=0.8 a \text { and } 2-T=0.2 a \\ & T=1.76 \mathrm{~N} \\ & {\left[T \times 2.5=0.8 \times 2.5+1 / 2(0.8) v^{2}\right]} \\ & v=\sqrt{ } 6=2.45 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1 M1 A1	5	Use N 2 for A and B and solve for T Apply Work/Energy equation to A

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	42

