Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

1 Use law of the logarithm of a power, quotient or product

M1

Remove logarithms and obtain a correct equation in x, e.g. $x^{2}+4=4 x^{2}$
Obtain final answer $x=2 / \sqrt{3}$, or exact equivalent

2 Use $\tan (A \pm B)$ formula and obtain an equation in $\tan \theta$
Using $\tan 45^{\circ}=1$, obtain a horizontal equation in $\tan \theta$ in any correct form
Reduce the equation to $7 \tan ^{2} \theta-2 \tan \theta-1=0$, or equivalent
Solve a 3-term quadratic for $\tan \theta$ M1
Obtain a correct answer, e.g. $\theta=28.7^{\circ}$ A1
Obtain a second answer, e.g. $\theta=165.4^{\circ}$, and no others
[Ignore answers outside the given interval. Treat answers in radians as a misread (0.500, 2.89).]

3 (i) Consider sign of $x^{5}-3 x^{3}+x^{2}-4$ at $x=1$ and $x=2$, or equivalent
Complete the argument correctly with correct calculated values
(ii) Rearrange the given quintic equation in the given form, or work vice versa

Obtain final answer 1.78
Show sufficient iterations to 4 d.p. to justify 1.78 to 2 d.p., or show there is a sign change in the interval $(1.775,1.785)$ to zero
(ii) (a) Commence division by $(2 x+1)$ reaching a partial quotient of $2 x^{2}+k x$

Obtain factorisation $(2 x+1)\left(2 x^{2}-x+2\right)$
[The M1 is earned if inspection reaches an unknown factor $2 x^{2}+B x+C$ and an equation in B and/or C, or an unknown factor $A x^{2}+B x+2$ and an equation in A and/or B.]
(b) State or imply critical value $x=-\frac{1}{2}$

Show that $2 x^{2}-x+2$ is always positive, or that the gradient of $4 x^{3}+3 x+2$ is always positive
Justify final answer $x>-\frac{1}{2}$
B1(dep*)

5 (i) State or imply $\mathrm{d} x=\sqrt{3} \sec ^{2} \theta \mathrm{~d} \theta$
Substitute for x and $\mathrm{d} x$ throughout M1
Obtain the given answer correctly A1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

(ii) Replace integrand by $\frac{1}{2} \cos 2 \theta+\frac{1}{2}$	B1
Obtain integral $\frac{1}{4} \sin 2 \theta+\frac{1}{2} \theta$	B1 $\sqrt{\text { 人 }}$
Substitute limits correctly in an integral of the form $c \sin 2 \theta+b \theta$, where $c b \neq 0$	M1
Obtain answer $\frac{1}{12} \sqrt{3} \pi+\frac{3}{8}$, or exact equivalent	A1
[The f.t. is on integrands of the form $a \cos 2 \theta+b$, where $a b \neq 0]$.	

[The f.t. is on integrands of the form $a \cos 2 \theta+b$, where $a b \neq 0$.]
(i) EITHER: State correct derivative of $\sin y$ with respect to x B1
Use product rule to differentiate the LHS M1
Obtain correct derivative of the LHS A1
Obtain a complete and correct derived equation in any form
Obtain a correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form
OR: \quad State correct derivative of $\sin y$ with respect to x
B1
Rearrange the given equation as $\sin y=x /(\ln x+2)$ and attempt to differentiate both sides

B1
Use quotient or product rule to differentiate the RHS M1
Obtain correct derivative of the RHS
Obtain a correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form
(ii) Equate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero and obtain a horizontal equation in $\ln x$ or $\sin y \quad$ M1

Solve for $\ln x$
M1
Obtain final answer $x=1 / \mathrm{e}$, or exact equivalent
A1

7
(i) Separate variables and attempt integration of one side

M1
Obtain term $-\mathrm{e}^{-y}$ A1
Integrate $x \mathrm{e}^{x}$ by parts reaching $x \mathrm{e}^{x} \pm \int \mathrm{e}^{x} \mathrm{~d} x$ M1

Obtain integral $x \mathrm{e}^{x}-\mathrm{e}^{x}$
Evaluate a constant, or use limits $x=0, y=0$ M1
Obtain correct solution in any form A1
Obtain final answer $y=-\ln \left(\mathrm{e}^{x}(1-x)\right)$, or equivalent A1
(ii) Justify the given statement

B1
[5]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	32

8 (i) EITHER: Substitute for \mathbf{r} in the given equation of p and expand scalar product M1
Obtain equation in λ in any correct form A1
Verify this is not satisfied for any value of λ A1
OR1: \quad Substitute coordinates of a general point of l in the Cartesian equation of plane p M1
Obtain equation in λ in any correct form A1
Verify this is not satisfied for any value of λ A1
OR2: Expand scalar product of the normal to p and the direction vector of l M1
Verify scalar product is zero A1
Verify that one point of l does not lie in the plane A1
OR3: Use correct method to find the perpendicular distance of a general point of l from p M1
Obtain a correct unsimplified expression in terms of λ A1
Show that the perpendicular distance is $5 / \sqrt{6}$, or equivalent, for all λ A1
OR4: Use correct method to find the perpendicular distance of a particular point of l from p M1
Show that the perpendicular distance is $5 / \sqrt{6}$, or equivalent A1
Show that the perpendicular distance of a second point is also $5 / \sqrt{6}$, or equivalent A1
(ii) EITHER: Calling the unknown direction vector $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ state equation $2 a+b+3 c=0$ B1
State equation $2 a-b-c=0$ B1
Solve for one ratio, e.g. $a: b$ M1
Obtain ratio $a: b: c=1: 4:-2$, or equivalent A1
OR: \quad Attempt to calculate the vector product of the direction vector of l and the normal vector of the plane p, e.g. $(2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}) \times(2 \mathbf{i}-\mathbf{j}-\mathbf{k})$ M2
Obtain two correct components of the product A1
Obtain answer $2 \mathbf{i}+8 \mathbf{j}-4 \mathbf{k}$, or equivalent A1
Form line equation with relevant vectors M1
Obtain answer $\mathbf{r}=5 \mathbf{i}+3 \mathbf{j}+\mathbf{k}+\mu(\mathbf{i}+4 \mathbf{j}-2 \mathbf{k})$, or equivalent A1 ${ }^{\wedge}$
9 (i) State or obtain $A=3$ B1
Use a relevant method to find a constant M1
Obtain one of $B=-4, C=4$ and $D=0$ A1
Obtain a second value A1
Obtain the third value A1
(ii) Integrate and obtain $3 x-4 \ln x$ B1 ${ }^{\wedge}$
Integrate and obtain term of the form $k \ln \left(x^{2}+2\right)$ M1
Obtain term $2 \ln \left(x^{2}+2\right)$ A1 \downarrow
Substitute limits in an integral of the form $a x+b \ln x+c \ln \left(x^{2}+2\right)$, where $a b c \neq 0$ M1
Obtain given answer $3-\ln 4$ after full and correct working A1
10 (a) Substitute and obtain a correct equation in x and y B1
Use $\mathrm{i}^{2}=-1$ and equate real and imaginary parts M1
Obtain two correct equations, e.g. $x+2 y+1=0$ and $y+2 x=0$ A1
Solve for x or for y M1
Obtain answer $z=\frac{1}{3}-\frac{2}{3} \mathrm{i}$ A1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	32

(b) (i) Show a circle with centre $-1+3$ i B1
Show a circle with radius 1 B1
Show the line $\operatorname{Im} z=3$ B1
Shade the correct region B1
(ii) Carry out a complete method to calculate the relevant angle M1
Obtain answer 0.588 radians (accept 33.7°) A1[2]

