Page		A Mark Schome		9709 m16 ms		<u>s 32</u>
P	age 4	•	Wark Scheme Cambridge International AS/A Level - March 2016	9700	- Pap	er
			Cambridge International AS/A Lever – March 2010	9709	JZ	
1	Use	law	of the logarithm of a power, quotient or product		M1	
	Ren	nove	e logarithms and obtain a correct equation in x, e.g. $x^2 + 4 = 4x^2$		A1	
	Obt	ain f	inal answer $x = 2/\sqrt{3}$, or exact equivalent		A1	[3]
2	Use	tan($(A \pm B)$ formula and obtain an equation in tan θ		M1	
	Usir	sing $\tan 45^\circ = 1$, obtain a horizontal equation in $\tan \theta$ in any correct form				
	Red	uce	the equation to $7 \tan^2 \theta - 2 \tan \theta - 1 = 0$, or equivalent		A1	
	Solv	ve a í	3-term quadratic for tan θ		M1	
	Obt	ain a	b second answer, e.g. $\theta = 165.4^{\circ}$, and no others		A1 A1	[6]
	[Ign	ore a	answers outside the given interval. Treat answers in radians as a misread (0.5	500, 2.89).]		[~]
3	(i)	Cor	nsider sign of $x^5 - 3x^3 + x^2 - 4$ at $x = 1$ and $x = 2$, or equivalent		M1	
	()	Cor	mplete the argument correctly with correct calculated values		A1	[2]
	(ii)	Rea	arrange the given quintic equation in the given form, or work vice versa		B 1	[1]
	(iii)	Use the iterative formula correctly at least once Obtain final answer 1,78				
		Shc in th	by sufficient iterations to 4 d.p. to justify 1.78 to 2 d.p., or show there is a signed interval (1.775, 1.785)	3n change	A1	[3]
	(i)	Sub	stitute $x = -\frac{1}{2}$ and equate to zero, or divide by $(2x \pm 1)$ and equate constant r	emainder		
7	(1)	to zero			M1	
		Obt	tain a = 3		A1	[2]
	(ii)	(a)	Commence division by $(2x + 1)$ reaching a partial quotient of $2x^2 + kx$		M1	
			Obtain factorisation $(2x+1)(2x^2 - x + 2)$		A1	[2]
			[The M1 is earned if inspection reaches an unknown factor $2x^2 + Bx + C$ as	nd an		
			equation in <i>B</i> and/or <i>C</i> , or an unknown factor $Ax^2 + Bx + 2$ and an equation <i>A</i> and/or <i>B</i> .]	ı in		
		(b)	State or imply critical value $x = -\frac{1}{2}$		B 1	
			Show that $2x^2 - x + 2$ is always positive, or that the gradient of $4x^3 + 3x + 2$	2 is always	R1 *	
			Justify final answer $x > -\frac{1}{2}$	B 1(c	len*)	[3]
				DI(U	P /	[2]
5	(i)	Stat	te or imply $dx = \sqrt{3} \sec^2 \theta \ d\theta$		B 1	
		Sub	ostitute for x and dx throughout		M1	[2]
		Obt	tain the given answer correctly		AI	[3]

			9709_m	16_m	<u>s_3</u> 2
Ρ	age 5	Mark Scheme		Paper	
		Cambridge International AS/A Level – March 2016	9709	32	
	(ii)	Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$		B 1	
		Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$		B1√	
		Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq 0$	1	M1	
		Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalent		A1	[4]
		[The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]			
6	(i)	EITHER: State correct derivative of sin y with respect to x Use product rule to differentiate the LHS Obtain correct derivative of the LHS Obtain a complete and correct derived equation in any form		B1 M1 A1 A1	
		Obtain a correct expression for $\frac{dy}{dx}$ in any form		A1	
		<i>OR</i> : State correct derivative of sin y with respect to x		B1	
		Rearrange the given equation as $\sin y = x / (\ln x + 2)$ and attempt to differentiate the RHS Use quotient or product rule to differentiate the RHS Obtain correct derivative of the RHS Obtain a correct expression for $\frac{dy}{dx}$ in any form	fferentiate	B1 M1 A1 A1	[5]
	(ii)	Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in ln x or sin y		M1	
		Solve for ln x Obtain final answer $x = 1/e$, or exact equivalent		M1 A1	[3]
7	(i)	Separate variables and attempt integration of one side Obtain term $-e^{-y}$ Integrate xe^x by parts reaching $xe^x \pm \int e^x dx$		M1 A1 M1	
		Obtain integral $xe^{x} - e^{x}$ Evaluate a constant, or use limits $x = 0, y = 0$ Obtain correct solution in any form		A1 M1 A1	[7]
		Johann man answer $y = -m(e_1(1-x))$, or equivalent		AI	[/]
	(ii)	Justify the given statement		B1	[1]

-		. [M	<u>9709 m</u>	16_m	<u>s 32</u>
Pa	age 6		Mark Scheme	Syllabus		er
			Cambridge International AS/A Level – March 2016	9709	32	
8	(i)	EITHE	R: Substitute for r in the given equation of <i>p</i> and expand scalar product		M1	
	()		Obtain equation in λ in any correct form		A1	
			Verify this is not satisfied for any value of λ		A1	
		<i>OR</i> 1:	Substitute coordinates of a general point of <i>l</i> in the Cartesian equation	of plane p	M1	
			Obtain equation in λ in any correct form		A1	
		0.00	Verify this is not satisfied for any value of λ		A1	
		OR2:	Expand scalar product of the normal to p and the direction vector of l		M1	
			Verify that one point of <i>l</i> does not lie in the plane		AI A1	
		OR3·	Use correct method to find the perpendicular distance of a general po	int	ЛІ	
		ons.	of <i>l</i> from <i>p</i>		M1	
			Obtain a correct unsimplified expression in terms of λ		A1	
			Show that the perpendicular distance is $5/\sqrt{6}$, or equivalent, for all λ	λ	A1	
		OR4:	Use correct method to find the perpendicular distance of a particular	ooint		
			of <i>l</i> from <i>p</i>		M1	
			Show that the perpendicular distance is $5/\sqrt{6}$, or equivalent		A1	
			Show that the perpendicular distance of a second point is also $5/\sqrt{6}$.	or		
			equivalent	01	A1	[3]
						[9]
	(ii)	EITHE	<i>R</i> : Calling the unknown direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ state equation $2a + b\mathbf{j} + c\mathbf{k}$	b+3c=0	B1	
			State equation $2a - b - c = 0$		B 1	
			Solve for one ratio, e.g. $a:b$		M1	
			Obtain ratio $a: b: c = 1: 4: -2$, or equivalent		A1	
		OR:	Attempt to calculate the vector product of the direction vector of l and	1 the normal		
			vector of the plane p, e.g. $(2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \times (2\mathbf{i} - \mathbf{j} - \mathbf{k})$		M2	
			Obtain two correct components of the product		A1	
			Obtain answer $2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}$, or equivalent		A1	
			Form line equation with relevant vectors		M1	
			Obtain answer $\mathbf{r} = 5\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \mu(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$, or equivalent		A1√	[6]
9	(i)	State o	r obtain $A = 3$		B1	
		Use a r	elevant method to find a constant		M1	
		Obtain	one of $B = -4$, $C = 4$ and $D = 0$		A1	
		Obtain	a second value		A1	
		Obtain	the third value		A1	[5]
	(ii)	Integra	te and obtain $3x - 4 \ln x$		B1√^	
	()	Integra	te and obtain term of the form $k \ln(x^2 + 2)$		M1	
		Obtain	term $2\ln(x^2+2)$		A1√ [≜]	
		Substit	ute limits in an integral of the form $ax \pm b \ln x \pm c \ln(x^2 \pm 2)$ where abc	<i>→</i> 0	M1	
		Obtain	given answer 2 $\ln 4$ after full and correct working	<i>+</i> 0		[5]
		Obtain	given answer 5 – in 4 arter full and correct working		AI	[3]
10	(a)	Substit	sute and obtain a correct equation in x and v		B 1	
	. /	Use i ²	=-1 and equate real and imaginary parts		M 1	
		Obtain	two correct equations, e.g. $x + 2y + 1 = 0$ and $y + 2x = 0$		Al	
		Solve f	for x or for y		M1	
		Obtain	answer $z = \frac{1}{2} - \frac{2}{3}$ i		A1	[5]

		9709 m	16 m	s 32
Page 7	Mark Scheme	Syllabus	Pap	er
	Cambridge International AS/A Level – March 2016	9709	32	
(b) (i) Show a circle with centre $-1+3$ i Show a circle with radius 1 Show the line Im $z = 3$ Shade the correct region		B1 B1 B1 B1	[4]
(ii) Carry out a complete method to calculate the relevant angle Obtain answer 0.588 radians (accept 33.7°)		M1 A1	[2]