Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	$\mathbf{2 2}$

1 Attempt division at least as far as quotient $2 x^{2}+k x$
Obtain quotient $2 x^{2}-x+2$ A1
Obtain remainder 6
Special case: Use of Remainder Theorem to give 6

2 Either State or imply non-modular inequality $(x-5)^{2}<(2 x+3)^{2}$ or corresponding pair of linear equations

B1
Attempt solution of 3-term quadratic equation or of 2 linear equations M1
Obtain critical values -8 and $\frac{2}{3}$
State answer $x<-8, \quad x>\frac{2}{3}$
Or Obtain critical value -8 from graphical method, inspection, equation B1
Obtain critical value $\frac{2}{3}$ similarly
State answer $x<-8, \quad x>\frac{2}{3}$

3 Use $2 \ln x=\ln x^{2} \quad$ B1
Use law for addition or subtraction of logarithms M1
Obtain $x^{2}=(3+x)(2-x)$ or equivalent with no logarithms A1
Solve 3-term quadratic equation M1
Obtain $x=\frac{3}{2}$ and no other solutions

4 (i) Use the iterative formula correctly at least once
Obtain final answer 1.516
Show sufficient iterations to justify accuracy to 3 dp or show sign change in interval $(1.5155,1.5165)$

B1
(ii) State equation $x=\sqrt{\frac{1}{2} x^{2}+4 x^{-3}}$ or equivalent \quad B1

Obtain exact value $\sqrt[5]{8}$ or $8^{0.2}$
B1
[2]

5 Obtain integral of form $k \mathrm{e}^{2 x+1} \quad$ M1
Obtain correct $3 \mathrm{e}^{2 x+1}$
Apply both limits correctly and rearrange at least to $\mathrm{e}^{2 a+1}=\ldots$
Use logarithms correctly to find a M1
Obtain 1.097

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	22

6 (i) Use product rule to obtain expression of form $k_{1} \mathrm{e}^{-x} \sin 2 x+k_{2} \mathrm{e}^{-x} \cos 2 x$
Obtain correct $-3 \mathrm{e}^{-x} \sin 2 x+6 \mathrm{e}^{-x} \cos 2 x$
Substitute $x=0$ in first derivative to obtain equation of form $y=m x$
Obtain $y=6 x$ or equivalent with no errors in solution
(ii) Equate first derivative to zero and obtain $\tan 2 x=k$

Carry out correct process to find value of x
Obtain $x=0.554$
Obtain $y=1.543$

7 (i) State $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{3} B1

Equate derivative of left-hand side to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{6 x^{2}}{3 y^{2}}$ or equivalent A1

Observe x^{2} and y^{2} never negative and conclude appropriately
A1
(ii) Equate first derivative to -2 and rearrange to $y^{2}=x^{2}$ or equivalent

Substitute in original equation to obtain at least one equation in x^{3} or y^{3}
Obtain $3 x^{3}=24$ or $x^{3}=24$ or $3 y^{3}=24$ or $-y^{3}=24$
Obtain (2, 2)
Obtain $(\sqrt[3]{24},-\sqrt[3]{24})$ or $(2.88,-2.88)$ and no others

8 (i) State $2 \sin x \cos x \cdot \frac{\cos x}{\sin x}$
Simplify to confirm $2 \cos ^{2} x$
B1
B1
(ii) (a) Use $\cos 2 x=2 \cos ^{2} x-1$ B1
Express in terms of $\cos x$ M1
Obtain $16 \cos ^{2} x+3$ or equivalent
State 3, following their expression of form $a \cos ^{2} x+b$
(b) Obtain integrand as $\frac{1}{2} \sec ^{2} 2 x$

Integrate to obtain form $k \tan 2 x$
Obtain correct $\frac{1}{4} \tan 2 x$
Apply limits correctly dep M1*
Obtain $\frac{1}{4} \sqrt{3}-\frac{1}{4}$ or exact equivalent

