	Page 4 Mark Scheme		9709 m Syllabus	116 ms 22 Paper 22	
	age 4	Cambridge International AS/A Level – March 2016			
1	Attempt division at least as far as quotient $2x^2 + kx$ Obtain quotient $2x^2 - x + 2$ Obtain remainder 6			M1 A1 A1	[3]
	Special	l case: Use of Remainder Theorem to give 6		B 1	
2	Either	State or imply non-modular inequality $(x-5)^2 < (2x+3)^2$ or corresponding pair of linear equations Attempt solution of 3-term quadratic equation or of 2 linear equations Obtain critical values -8 and $\frac{2}{3}$		B1 M1 A1	
		State answer $x < -8$, $x > \frac{2}{3}$		A1	
	Or	Obtain critical value -8 from graphical method, inspection, equation Obtain critical value $\frac{2}{3}$ similarly State answer $x < -8$, $x > \frac{2}{3}$		B1 B2 B1	[4]
3	Use lav Obtain Solve 3	n $x = \ln x^2$ w for addition or subtraction of logarithms $x^2 = (3+x)(2-x)$ or equivalent with no logarithms B-term quadratic equation $x = \frac{3}{2}$ and no other solutions		B1 M1 A1 M1 A1	[5]
4	Ol Sh	se the iterative formula correctly at least once btain final answer 1.516 now sufficient iterations to justify accuracy to 3 dp or show sign change interval (1.5155, 1.5165)		M1 A1 B1	[3]
		ate equation $x = \sqrt{\frac{1}{2}x^2 + 4x^{-3}}$ or equivalent btain exact value $\sqrt[5]{8}$ or $8^{0.2}$		B1 B1	[2]
5	Obtain Apply	integral of form ke^{2x+1} correct $3e^{2x+1}$ both limits correctly and rearrange at least to $e^{2a+1} =$ garithms correctly to find <i>a</i> 1.097		M1 A1 M1 M1 A1	[5]

Page 5	5 Mark Scheme	9709_m16_ms Syllabus Pape		<u>s_2</u> er
- J - ·	Cambridge International AS/A Level – March 2016	9709	22	
(i)	Use product rule to obtain expression of form $k_1 e^{-x} \sin 2x + k_2 e^{-x} \cos 2x$		M1	
(-)	Obtain correct $-3e^{-x} \sin 2x + 6e^{-x} \cos 2x$		A1	
	Substitute $x = 0$ in first derivative to obtain equation of form $y = mx$		M1	
	Obtain $y = 6x$ or equivalent with no errors in solution		A1	[4
(ii)	Equate first derivative to zero and obtain $\tan 2x = k$		M1*	
	Carry out correct process to find value of x	dep	M1*	
	Obtain $x = 0.554$		A1	гл
	Obtain $y = 1.543$		A1	[4
(i)	State $3y^2 \frac{dy}{dx}$ as derivative of y^3		B 1	
	Equate derivative of left-hand side to zero and solve for $\frac{dy}{dx}$		M1	
	Obtain $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent		A1	
	Observe x^2 and y^2 never negative and conclude appropriately		A1	[4
(ii)	Equate first derivative to -2 and rearrange to $y^2 = x^2$ or equivalent		B 1	
	Substitute in original equation to obtain at least one equation in x^3 or y^3		M1	
	Obtain $3x^3 = 24$ or $x^3 = 24$ or $3y^3 = 24$ or $-y^3 = 24$		A1	
	Obtain (2, 2)		A1	
	Obtain $(\sqrt[3]{24}, -\sqrt[3]{24})$ or (2.88, -2.88) and no others		A1	[5
(i)	State $2\sin x\cos x$ $\frac{\cos x}{\cos x}$		B1	
(1)	State $2\sin x \cos x \cdot \frac{\cos x}{\sin x}$		DI	
	Simplify to confirm $2\cos^2 x$		B 1	[2
(ii)	(a) Use $\cos 2x = 2\cos^2 x - 1$		B1	
	Express in terms of $\cos x$		M1	
	Obtain $16\cos^2 x + 3$ or equivalent		A1	
	State 3, following their expression of form $a\cos^2 x + b$		A1	[4
	(b) Obtain integrand as $\frac{1}{2}\sec^2 2x$		B 1	
	Integrate to obtain form $k \tan 2x$		M1*	
	Obtain correct $\frac{1}{4} \tan 2x$		A1	
	Apply limits correctly	dep	M1*	
	Obtain $\frac{1}{4}\sqrt{3} - \frac{1}{4}$ or exact equivalent		A1	[5