| of the string is attached to a fixed point α downward vertical, where $\cos \alpha = \frac{2}{3}$. The | A particle P of mass m is attached to one end of a light inextensible string of length a . The other end of the string is attached to a fixed point O . The string is held taut with OP making an angle α with the downward vertical, where $\cos \alpha = \frac{2}{3}$. The particle P is projected perpendicular to OP in an upward direction with speed $\sqrt{3ag}$. It then starts to move along a circular path in a vertical plane. | | |--|---|--| | Find the cosine of the angle between the slack. | string and the upward vertical when the string first becomes [4] | A uniform lamina is in the form of a triangle ABC in which angle B is a right angle, AB = 9a and BC = 6a. The point D is on BC such that BD = x (see diagram). The region ABD is removed from the lamina. The resulting shape ADC is placed with the edge DC on a horizontal surface and the plane ADC is vertical. | Find the set of values of x , in terms of a , for which the shape is in equilibrium. | values of x , in terms of a , for which the shape is in equilibrium. [6] | | | |--|--|--|--| | | | | | | | ••• | | | | | | | | | | | | | | | ••• | | | | | | | | | | ••• | | | | | | | | | | | | | | | ••• | | | | | | | | | | | | | | | ••• | | | | | | | | | | ••• | | | | | | | | | | | | | | | ••• | | | | | | | | | | ••• | | | | | | | | | | | | | | | ••• | | | | | | | | | | ••• | | | | | | | | | the end of a light elastic string, of natural length a and modulus of elasticity $\frac{16}{3}Mg$, is attached the point O . A particle P of mass AM is attached to the other end of the string and hangs vertically utilibrium. Another particle of mass AM is attached to AM and the combined particle is then release the proof of the speed of the combined particle when it has descended a distance AM is attached. | | | |--|--|--| | from rest. The speed of the combined particle when it has descended a distance $\frac{1}{4}a$ is v .
Find an expression for v in terms of g and a . | Page 4 of 12 | 9231_w22_qp_32 | |--------------|----------------| |
 | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | |
 | magnitude $\frac{500}{v}$ N in the direction <i>OP</i> and a resistive force of magnitude $\frac{1}{2}v^2$ N. When $t = 0$, $x = 0$ at $v = 5$. | | | |---|--|--| 4 | | Page 6 of 12 | 9231_w22_qr | |----------------------------------|--------------------------------------|-------------| State the value that the speed a | approaches for large values of x . | | | State the value that the speed a | approaches for large values of x . | | | State the value that the speed a | - A particle P is projected with speed $u \, \text{m s}^{-1}$ at an angle of θ above the horizontal from a point O on a horizontal plane and moves freely under gravity. The horizontal and vertical displacements of P from O at a subsequent time ts are denoted by x m and y m respectively. - (a) Show that the equation of the trajectory is given by | Show that the equation of the trajectory is given by | |--| | $y = x \tan \theta - \frac{gx^2}{2u^2} (1 + \tan^2 \theta).$ [4] | In the subsequent motion P passes through the point with coordinates (30, 20). | | Given that one possible value of $\tan \theta$ is $\frac{4}{3}$, find the other possible value of $\tan \theta$. | | |-----|--|--------| | • | | •••••• | | | | | | | | | | • | | | | • • | | | | | | | | | | | | • | | ••••• | | | | | | | | | | • | | | | | | | | | | | | • | | | | | | | | | | | | • | | •••••• | • | | ••••• | | | | | | | | | | • | | | | | | | | | | | | • | | | | | | ••••• | | | | | | •• | | | | | | | | | | | | • | | | A light inextensible string is threaded through a fixed smooth ring R which is at a height h above a smooth horizontal surface. One end of the string is attached to a particle A of mass m. The other end of the string is attached to a particle B of mass $\frac{6}{7}m$. The particle B moves in a horizontal circle on the surface. The particle B hangs in equilibrium below the ring and above the surface (see diagram). When A has constant angular speed ω , the angle between AR and BR is θ and the normal reaction between A and the surface is N. When A has constant angular speed $\frac{3}{2}\omega$, the angle between AR and BR is α and the normal reaction between A and the surface is $\frac{1}{2}N$. | (a) | Show that $\cos \theta = \frac{4}{9} \cos \alpha$. | [5] | |-----|---|-------| | | | | | | | | | | | | | | | •••• | | | | •••• | | | | •••• | | | | | | | | | | | | ••••• | | | | | | | | ••••• | | | | | | | | ••••• | | | | •••• | | | 9231_w22_q | |--|------------| | | | | | | | | | | | | | | | | Find N in terms of m and g and find the value of $\cos \alpha$. | Two uniform smooth spheres A and B of equal radii have masses m and $\frac{1}{2}m$ respectively. The two spheres are moving on a horizontal surface when they collide. Immediately before the collision, sphere A is travelling with speed u and its direction of motion makes an angle α with the line of centres. Sphere B is travelling with speed D and its direction of motion makes an angle D with the line of centres (see diagram). The coefficient of restitution between the spheres is $\frac{5}{8}$ and $\alpha + \beta = 90^{\circ}$. | Find the component of your answer in terms of | of u and α . | | | | |---|-----------------------|-------|--------|--------| ••••• | ••••• | •••••• | •••••• | ## Page 12 of 12 The direction of motion of B after the collision is parallel to the direction of motion of A before the collision.