1 (a) Find the set of values of k for which the system of equations

x + 2y + 3z = 1,	
kx + 4y + 6z = 0,	
7x + 8y + 9z = 3	

		•••••	•••••	
			••••••	
•••••		•••••		••••••
•••••		•••••		•••••
•••••		•••••		•••••
Interpret the situation of	geometrically in	the case where	the system of e	quations does not ha
i 1ti				
unique solution.				

2 A curve has equation

$$(x+1)y+y^2=2.$$

(a)	Show that $\frac{dy}{dx} = -$	$-\frac{2}{3}$ at the point $(0, -2)$.	[3]
		d^2v	
(b)	Find the value of	$\frac{d^2y}{dx^2}$ at the point $(0, -2)$.	[4]
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

Sui	face generated when the curve is rotated through 2π radians about the x-axis.
• • • • •	
••••	
••••	
••••	

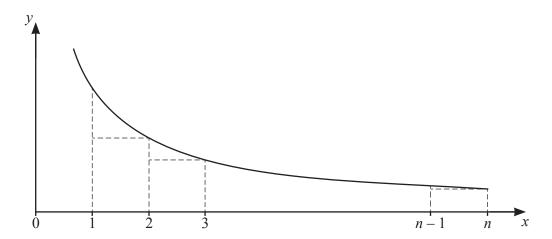
00

4 Find the solution of the differential equation

$$(4t^2 - 1)\frac{dx}{dt} + 4x = 4t^2 - 1$$

for which $x = 3$ when $t = 1$. Give your answer in the form $x = f(t)$.	[9]

Page 6 of 14	9231_w22_qp_22
 (2)	


(b)	Use de Moivre's theorem to show that	
	$\cos 4\theta = 8\cos^4\theta - 8\cos^2\theta + 1.$	

(c) Hence obtain the real roots of the equation

$$16(8x^4 - 8x^2 + 1)^4 - 9 = 0$$

in the form $cos(q\pi)$, where q is a rational number.	[5]

6

The diagram shows the curve $y = \frac{1}{\sqrt{x^2 + 2x}}$ for x > 0, together with a set of (n-1) rectangles of unit width.

By considering the sum of the areas of these rectangles, show that

$$\sum_{r=1}^{n} \frac{1}{\sqrt{r^2 + 2r}} < \ln\left(n + 1 + \sqrt{n^2 + 2n}\right) + \frac{1}{3}\sqrt{3} - \ln\left(2 + \sqrt{3}\right).$$
 [10]

Page 10 of 14	9231_w22_qp_22
285	

7	(a)	It is given that λ is an eigenvalue of the non-singular square matrix \mathbf{A} , with corresponding eigenvector \mathbf{e} .
		Show that λ^{-1} is an eigenvalue of \mathbf{A}^{-1} for which \mathbf{e} is a corresponding eigenvector. [2]
	The	matrix A is given by
		$\mathbf{A} = \begin{pmatrix} 2 & 0 & 3 \\ 15 & -4 & 3 \\ 3 & 0 & 2 \end{pmatrix}.$
	(b)	Given that -1 is an eigenvalue of A , find a corresponding eigenvector. [2]
	(c)	It is also given that $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ are eigenvectors of A . Find the corresponding eigenvalues. [2]

<i>(u)</i>	Hence find a matrix P and a diagonal matrix D such that $A^{-1} = PDP^{-1}$.	[
		•••••
e)	Use the characteristic equation of A to show that $\mathbf{A}^{-1} = p\mathbf{A}^2 + q\mathbf{I}$, where p are	nd q are ration
	numbers to be determined.	[
		•••••
		•••••
		•••••

8 It is given that $y = \cosh u$, where u > 0, and

$$\sqrt{\cosh^2 u - 1} \left(\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} + \frac{\mathrm{d}u}{\mathrm{d}x} \right) + \cosh u \left(\frac{\mathrm{d}u}{\mathrm{d}x} \right)^2 - 2\cosh u = 4\mathrm{e}^{-x}.$$

(a) Show that

		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - 2y =$	$4e^{-x}$.		[4]
					•••••
					•••••
				•••••	
(b)	Find u in terms of x , given that	when $x = 0$, $u = 1$	n 3 and $\frac{\mathrm{d}u}{\mathrm{d}x} = 3$.		[10]
					•••••
					•••••
		Z & S			•••••

Page 14 of 14	9231_w22_qp_22
F=1-56 + F=1	
- 5 - 5 - 1	